ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help

|
|
|
|

Trending News

Gut Bacteria, Artificial Sweeteners and Glucose Intolerance

Reverse Mitochondrial Damage

Culprits of Autism Identified: Toxins, Gut Bacteria, Nutritional Deficiencies, and Vaccines Made wit...

Turmeric compound boosts regeneration of brain stem cells

CoQ10: The Longevity Factor

Magnesium: Widespread Deficiency with Deadly Consequences

Use of Broad-Spectrum Antibiotics Before Age 2 Associated with Obesity Risk

Is Homocysteine Making You Sick?

Extending Life and Fighting Disease with Resveratrol

VIDEO: Beautiful Clouds - Relaxation and Meditation

 
Print Page
Email Article

New cross-kingdom communication mechanism found in gut bacteria

  [ 2 votes ]   [ Discuss This Article ]
By Regis Stentz • www.ProHealth.com • February 23, 2014


New cross-kingdom communication mechanism found in gut bacteria
Reprinted with the kind permission of the Institute of Food Research, University of East Anglia.

By Regis Stentz

Researchers from the Institute of Food Research and the University of East Anglia have discovered how the beneficial bacteria in our guts communicate with our own cells. Here, Dr Regis Stentz of the GHFS programme talks about uncovering a novel signalling mechanism from commensal bacteria with potential to influence host epithelial cells and how this signal is protected from degradation in the gut.

Over the past few decades, it became clear to gut physiologists and microbiologists that the establishment of complex symbiotic relationships between the gut microbiome and the host intestinal cells is essential for health. It is known that commensal bacteria from the gut use diffusible small molecules such as hormones and nutrients to interact at a distance with the host. In this article, we describe a new crosstalk mechanism involving an enzyme packaged into outer membrane vesicles (OMVs) produced by the prevalent symbiotic gut bacterium, Bacteroides thetaiotaomicron.

First of all, our study has identified and characterised for the first time a homolog of a eukaryotic inositolphosphate signaling phosphatase, MINPP, in major species of human gut bacterial genomes. This is novel, as bacteria have not previously been thought to use the inositol phosphate signaling cascade (Michell, 2008).

One of the key questions we address in this manuscript is how MINPP expressed by B. thetaiotaomicron(BtMinpp) in the gut survives a hostile protease-containing environment and yet accesses extracellular InsP6(phytate). We show that substantial InsP6 phosphatase activity is detected in OMVs and demonstrate the capacity of intact vesicles containing BtMinpp to degrade InsP6 in the external milieu including caecal contents of mice. These findings demonstrated that BtMinpp is retained inside the OMVs, which InsP6 must enter in order to access the BtMinpp phosphatase. 

It is well established that OMVs produced by some bacterial pathogens are capable of interacting with host cells to deliver virulence factors such as proteases and toxins (Ellis & Kuehn, 2010). We hypothesised therefore that a similar mechanism might be used byB. thetaiotaomicron OMVs to deliver BtMinpp into host intestinal epithelial cells. We demonstrated for the first time that BtMinpp interacts with the inositol polyphosphate signaling pathways of cultivated human epithelial cells and triggers the release of calcium from intracellular stores such as the endoplasmic reticulum, into the cytosol.
 
The physiological significance of InsP6 phosphatase activity in the human gut is multifactorial. First, there is nutritional benefit to both the host and the bacterial community from the inorganic phosphate and the inositol moiety that are both released by the phosphatase. Additionally, the hydrolysis of InsP6 eliminates its anti-nutritive properties, such as divalent ion chelation and inhibition of polysaccharide digestibility. High concentrations of InsP6 have been considered to have anti-carcinogenic properties in the human colon (Fox & Eberl, 2002; Vucenik & Shamsuddin, 2003). Our data reveal that commensal gut bacteria utilize OMVs in a manner that is beneficial to the host, by contributing to InsP6 homeostasis.

Furthermore, the ability of BtMinpp-containing OMVs to stimulate intracellular Ca2+release in human colonic epithelial cells suggests a further biological significance to bacterial Minpps. The possibility for an enzyme to mediate dialog between gut bacteria and the human host is a novel addition to a field of research that has previously focused on the roles of diffusible, small-molecule hormones and nutrients.

Reference: A Bacterial Homolog of a Eukaryotic Inositol Phosphate-Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut, Regis Stentz et al. will be published in the journal Cell Reports on 13th February 2014. doi: 10.1016/j.celrep.2014.01.021

Ellis TN, Kuehn MJ (2010) Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles. Microbiol Mol Biol R 74: 81-94

Fox CH, Eberl M (2002) Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: a systematic review. Complement Ther Med 10: 229-234

Michell RH (2008) Inositol derivatives: evolution and functions. Nature reviews Molecular cell biology 9: 151-161

Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: From laboratory to clinic. J Nutr 133: 3778S-3784S



Please Discuss This Article:   Post a Comment 



[ Be the first to comment on this article ]




 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS & Fibromyalgia treatment and research news
 Privacy Guaranteed  |  View Archives

Save on Vitamins and Supplements

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
FibroSleep™ by ProHealth FibroSleep™ by ProHealth
The All-in-One Natural Sleep Aid
Vitamin D3 Extreme™ by ProHealth Vitamin D3 Extreme™ by ProHealth
50,000 IU Vitamin D3 - Prescription Strength
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Optimized Curcumin Longvida® by ProHealth Optimized Curcumin Longvida® by ProHealth
Supports Cognition, Memory & Overall Health

Natural Remedies

Green Coffee Extract: Unique Obesity Intervention Green Coffee Extract: Unique Obesity Intervention
The Curcumin Revolution: The Curcumin Revolution: "Golden" Ticket to Better Health
The Most Powerful Natural Antioxidant Discovered to Date - Hydroxytyrosol The Most Powerful Natural Antioxidant Discovered to Date - Hydroxytyrosol
Ubiquinol - A More Advanced Form of the Energy Producing Nutrient CoQ-10 Ubiquinol - A More Advanced Form of the Energy Producing Nutrient CoQ-10
Repair Damaged Mitochondria and Reduce Fatigue Up to 45% Repair Damaged Mitochondria and Reduce Fatigue Up to 45%

FIBROMYALGIA RESOURCES
What is Fibromyalgia?
Fibromyalgia 101
Fibromyalgia Symptoms
Fibromyalgia Treatments
| CFS RESOURCES
What is CFS?
ME/CFS 101
ME/CFS Symptoms
ME/CFS Treatments
| FORUMS
Fibromyalgia
ME/CFS
ADVANCED MEDICAL LABS
WHOLESALE  |  AFFILIATES
GUARANTEE
CONTACT US
PRIVACY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing