ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help

|
|
|
|

Trending News

Strengthening DNA to Prevent Inflammation, Heart Disease, Dementia and More

Magnesium: Widespread Deficiency with Deadly Consequences

Turmeric compound boosts regeneration of brain stem cells

The Most Powerful Natural Antioxidant Discovered to Date - Hydroxytyrosol

Culprits of Autism Identified: Toxins, Gut Bacteria, Nutritional Deficiencies, and Vaccines Made wit...

CoQ10: The Longevity Factor

Omega-3 Fatty Acids Increase Brain Volume

Optimal Prostate Defense Requires a Multi-Modal Strategy

Use of Broad-Spectrum Antibiotics Before Age 2 Associated with Obesity Risk

Extending Life and Fighting Disease with Resveratrol

 
Print Page
Email Article

New study proves that pain is not a symptom of osteoarthritis, pain causes arthritis

  [ 3 votes ]   [ Discuss This Article ]
By University of Rochester (NY) Medical Center • www.ProHealth.com • September 29, 2008


New treatments will seek to interrupt 'crosstalk' between joints and the spinal cord.

Pain is more than a symptom of osteoarthritis, it is an inherent and damaging part of the disease itself, according to a study published September 29* in the journal Arthritis and Rheumatism.

The study revealed that pain signals originating in arthritic joints, and the biochemical processing of those signals as they reach the spinal cord, worsen and expand arthritis. In addition, researchers found that nerve pathways carrying pain signals transfer inflammation from arthritic joints to the spine and back again, causing disease at both ends.

Technically, pain is a patient's conscious realization of discomfort. Before that can happen, however, information must be carried along nerve cell pathways from say an injured knee to the pain processing centers in dorsal horns of the spinal cord, a process called nociception. The current study provides strong evidence that two-way, nociceptive "crosstalk" may:

• First enable joint arthritis to transmit inflammation into the spinal cord and brain,

• And then to spread through the central nervous system (CNS) from one joint to another.

Furthermore, if joint arthritis can cause neuro-inflammation, it could have a role in conditions like Alzheimer's disease, dementia and multiple sclerosis.

Armed with the results, researchers have identified likely drug targets that could interfere with key inflammatory receptors on sensory nerve cells as a new way to treat osteoarthritis (OA), which destroys joint cartilage in 21 million Americans. The most common form of arthritis, OA eventually brings deformity and severe pain as patients lose the protective cushion between bones in weight-bearing joints like knees and hips.

"Until relatively recently, osteoarthritis was believed to be due solely to wear and tear, an inevitable part of aging," said Stephanos Kyrkanides, DDS, PhD, associate professor of Dentistry at the University of Rochester Medical Center. "Recent studies have revealed, however, that specific biochemical changes contribute to the disease, changes that might be reversed by precision-designed drugs. Our study provides the first solid proof that some of those changes are related to pain processing, and suggests the mechanisms behind the effect," said Kyrkanides, whose work on genetics in dentistry led to broader applications. The common ground between arthritis and dentistry: the jaw joint is a common site of arthritic pain.

Study Details

Past studies have shown that specific nerve pathways along which pain signals travel repeatedly become more sensitive to pain signals with each use. This may be a part of ancient survival skill (if that hurt once, don't do it again). Secondly, pain has long been associated with inflammation (swelling and fever).

In fact, past research has shown that the same chemicals that cause inflammation also cause the sensation of pain and hyper-sensitivity to pain if injected. Kyrkanides' work centers around one such pro-inflammatory, signaling chemical called Interleukin 1-beta (IL-1beta), which helps to ramp up the body’s attack on an infection.

Specifically, Kyrkanides' team genetically engineered a mouse where they could turn up on command the production of IL-1beta in the jaw joint, a common site of arthritis. Experiments showed for the first time that turning up IL-1beta in a peripheral joint caused higher levels of IL-1? to be produced in the dorsal horns of the spinal cord as well.

Using a second, even more elaborately engineered mouse model, the team also demonstrated for the first time that creating higher levels of IL-1beta in cells called astrocytes in the spinal cord caused more osteoarthritic symptoms in joints. Past studies had shown astrocytes, non-nerve cells (glia) in the central nervous system that provide support for the spinal cord and brain, also serve as the immune cells of CNS organs. Among other things, they release cytokines like IL-1beta to fight disease when triggered. The same cytokines released from CNS glia may also be released from neurons in joints, possibly explaining how crosstalk carries pain, inflammation and hyper-sensitivity back and forth.

In both mouse models, experimental techniques that shut down IL-1beta signaling reversed the crosstalk effects.

Specifically, researchers used a molecule, IL-1RA, known to inhibit the ability of IL-1beta to link up with its receptors on nerve cells. Existing drugs (e.g. Kineret® (anakinra), made by Amgen and indicated for rheumatoid arthritis) act like IL-1RA to block the ability IL-1beta to send a pain signal through its specific nerve cell receptor, and Kyrkanides' group is exploring a new use for them as osteoarthritis treatment.

The implications of this process go further, however, because the cells surrounding sensory nerve cell pathways too can be affected by crosstalk. If 10 astrocytes secrete IL-1? in response to a pain impulse, Kyrkanides said, perhaps 1,000 adjacent cells will be affected, greatly expanding the field of inflammation. Spinal cord astrocytes are surrounded by sensory nerve cells that connect to other areas of the periphery, further expanding the effect. According to Kyrkanides' model, increased inflammation in the central nervous system can then send signals back down the nerve pathways to the joints, causing the release of inflammatory factors there.

Among the proposed, inflammatory factors is calcitonin gene related peptide (CGRP). The team observed higher levels calcitonin-gene related peptide (CGRP) production in primary sensory fibers in the same regions where IL-1? levels rose, and the release of IL-1? by sensory neurons may cause the release of CGRP in joints. Past studies by Kyrkanides reveal that CGRP can also cause cartilage-producing cells (chondrocytes) to mature too quickly and die, a hallmark of osteoarthritis.

Joining Kyrkanides in the publication from the University of Rochester School of Medicine and Dentistry were co-authors M. Kerry O'Banion, M.D., Ph.D., Ross Tallents, D.D.S., J. Edward Puzas, Ph.D. and Sabine M. Brouxhon, M.D. Paolo Fiorentino was a student contributor and Jennie Miller was involved as Kyrkanides' technical associate. Maria Piancino, led a collaborative effort at the University of Torino, Italy. This work was supported in part by grants from the National Institutes of Health.

"Our study results confirm that joints can export inflammation in the form of higher IL-1beta along sensory nerve pathways to the spinal cord, and that higher IL-1beta inflammation in the spinal cord is sufficient in itself to create osteoarthritis in peripheral joints," Kyrkanides said.

"We believe this to be a vitally important process contributing to orthopaedic and neurological diseases in which inflammation is a factor."

* Source: Kyrkanides S, et al., “Spinal interleukin-1beta in a mouse model of arthritis and joint pain,” Arthritis & Rheumatism, Sep 29, 2008; 58(10) pp 3100-3109. [E-mail: stephanos_kyrkanides@urmc.rochester.edu)



Please Discuss This Article:   Post a Comment 



[ Be the first to comment on this article ]




 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS & Fibromyalgia treatment and research news
 Privacy Guaranteed  |  View Archives

Save on Vitamins and Supplements

Featured Products

Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Vitamin D3 Extreme™ by ProHealth Vitamin D3 Extreme™ by ProHealth
50,000 IU Vitamin D3 - Prescription Strength
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Optimized Curcumin Longvida® by ProHealth Optimized Curcumin Longvida® by ProHealth
Supports Cognition, Memory & Overall Health

Natural Remedies

The Revolutionary 'Good Fat' That Promotes Heart, Brain, Bone and Joint Health The Revolutionary 'Good Fat' That Promotes Heart, Brain, Bone and Joint Health
Preserving Cognitive Function with Aging Preserving Cognitive Function with Aging
Shoo Pain, Don't Bother Me - Top 10 Nutrients to Take Back Your Life Shoo Pain, Don't Bother Me - Top 10 Nutrients to Take Back Your Life
The Curcumin Revolution: The Curcumin Revolution: "Golden" Ticket to Better Health
Dreaming of a Good Night's Sleep? Dreaming of a Good Night's Sleep?

FIBROMYALGIA RESOURCES
What is Fibromyalgia?
Fibromyalgia 101
Fibromyalgia Symptoms
Fibromyalgia Treatments
| CFS RESOURCES
What is CFS?
ME/CFS 101
ME/CFS Symptoms
ME/CFS Treatments
| FORUMS
Fibromyalgia
ME/CFS
ADVANCED MEDICAL LABS
WHOLESALE  |  AFFILIATES
GUARANTEE
CONTACT US
PRIVACY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing