ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

Researchers Discover How Rheumatoid Arthritis Destroys Bone - Drug Development Underway

  [ Not Yet Rated ]   [ Discuss This Article ]
By University of Rochester (NY) Medical Center • • August 29, 2008

Researchers have discovered key details of how rheumatoid arthritis (RA) destroys bone, according to a study published August 22 in the Journal of Biological Chemistry.*
The findings are already guiding attempts to design new drugs to reverse RA-related bone loss and may also address more common forms of osteoporosis with a few adjustments.
Two million Americans suffer from rheumatoid arthritis (RA), which causes swelling, pain and deformity in joints and also leads to the thinning of bone. In autoimmune diseases like RA, the body’s disease-fighting immune cells mistakenly identify parts of a person's body as foreign invaders, akin to bacteria, and produce chemicals to destroy them.
Among the immune chemicals known to play a central in autoimmune disease is tumor necrosis factor alpha (TNF alpha), which ramps up the production of immune cells and chemicals as part of the body’s response to disease.
When overproduced in RA patients, TNF alpha signals for the destruction of cartilage and bone.
Beyond its control over immune cells, TNF alpha also influences bone mass. Human bone is continually regenerated to maintain strength. Under the control of signaling molecules which include TNF alpha, two cell types, balanced against each other, make bone recycling possible.
Osteoclasts break down aging bone to make way for new bone,
• While osteoblasts build new bone at the sites where osteoclasts have removed it.
Going into the study, the field understood that TNF alpha decreases the number of bone-building osteoblasts, but not how.
The current study provides the first direct proof that the TNF alpha affects osteoblasts through an enzyme called Smad Ubiquitin Regulatory Factor 1 (Smurf1), which in turn shuts down two proteins that would otherwise drive bone-building.
• While traditional RA drugs like NSAIDs [non-steroidal anti-inflammatory analgesics such as aspirin or ibuprofen] and steroids treat symptoms,
• A newer class of best-selling drugs (such as HumiraR, RemicadeR and EnbrelR) reverses the disease process by shutting down TNF alpha activity.
• While the new [“TNF blocker”] drugs are effective for many patients, others experience infections and even lymphoma in a few cases.
• The new drugs are based on bioengineered versions of proteins made by human immune cells called antibodies, and are very expensive to make.
• Thus, the field has been searching for smaller, simpler chemicals that would be effective, but with lower costs and fewer side effects.
“The significance of our study is that it identifies SMURF1 as the signaling partner through which TNF does damage in RA-related bone loss,” said Lianping Xing, PhD, assistant professor of Pathology and Laboratory Medicine at the University of Rochester Medical Center. “That has enabled researchers to begin designing small molecule drugs to shut down the action of Smurf 1 and its relatives.
“Furthermore, since mice engineered to have less Smurf1 expression develop thicker bones, future drugs that shut down Smurf1 may be also useful against more common forms of osteoporosis simply by changing the dose. Of course, this is early-stage work with many obstacles ahead, but it is exciting nonetheless.”
Study Details
In the late 1990s, Gerald H. Thomsen, PhD, at Stony Brook University in New York discovered that Smurf1 helps to attach a protein tag called ubiquitin to aging proteins in need of disposal. The tag then attracts the attention of cellular machines called proteosomes that degrade proteins.
Xing’s team generated two lines of mice – one with high TNF alpha levels and with Smurf1 present, and a second group with high TNF alpha production but no Smurf1. Bone volume and strength of both groups of mice were then examined using a combination of imaging technologies and were compared. Experiments showed that increased TNF alpha levels dramatically decreased the levels of two key factors, Smad1 and Runx2, which signal to increase the number of bone-building osteoblasts. Increasing TNF alpha levels only decreased levels of Smad1 and Runx2, however, if Smurf1 was present to pass on the signal from TNF alpha.
Genetically engineered mice with the Smurf1 gene removed no longer responded to TNF alpha because Smurf1 was not present to label Smad1 and Runx2 with the ubiquitin destruction tag. As expected, mice with increased TNF alpha and Smurf1 present had lesser bone mass than their counterparts, a result partially reversed in mice where Smurf1 had been removed.
Bolstering the importance of the current paper is the fact that TNF alpha promotes the destruction of some types of cancer cells. While toxic when administered systemically, it has found a niche in preventing the spread of skin cancer, where it can be injected directly into a tumor. Other drugs then became available that shut down the TNF signal by directly inhibiting the protein-eating proteosomes that receive the signal. There is an existing anti-myeloma drug on the market, bortezomib, which shuts down the proteosomes that Smurf1 partners with to destroy Smad 1 and Runx2.
Thus, Xing’s team will be looking at the effect of bortezomib over the next year to see if shutting down proteosomes in bone cells does indeed increase bone mass in mice engineered to have high levels of TNF alpha. Bortezomib, is a general proteosome inhibitor, however, and does not specifically target Smurf 1. Future efforts will seek to identify Smurf1-specific drug candidates. In the meantime, the team is also seeking other groups of ligases that, like Smurf1, contribute to bone loss because experiments revealed that Smurf1 is not responsible for 100 percent of the bone loss under inflammatory conditions.
…“Our over-all hypothesis is that in inflammatory diseases like RA, the function of a group of enzymes like Smurf1 gets turned on to cause proteasome degradation of key regulator proteins leading to bone loss,” Xing said. “The real, future solution will involve a treatment that specifically addresses each of these.”
* Source: “Ubiquitin Ligase Smurf1 Mediates Tumor Necrosis Factor-induced Systemic Bone Loss by Promoting Proteasomal Degradation of Bone Morphogenetic Signaling Proteins" Journal of Biological Chemistry, Aug 22, 2008. 283(34), 23084-92. PMID: 18567580 Guo R, Xing L, et al. Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York [E-mail: ]

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Vitamin D3 Extreme™ Mitochondria Ignite™ with NT Factor®

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils

Natural Remedies

D-ficient? Health Risks You Need to Know About D-ficient? Health Risks You Need to Know About
Are You Obtaining the Proper Enzymes? Are You Obtaining the Proper Enzymes?
"It's Not Easy Being Green" - But It Is Healthy
Milk Thistle: Trusted Support for Health & Healing in a Toxic World Milk Thistle: Trusted Support for Health & Healing in a Toxic World
Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map