ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

One Gene Variant for Liver Function Determines How We Respond to At Least Half of All Drugs - Simple Test Will One Day Be Routine in Rx

  [ 25 votes ]   [ Discuss This Article ] • May 15, 2010

The test will be made easy to conduct in clinical settings and affordable for patients, Ohio State researchers predict - and just needs to be done once.

Why do different people respond differently to drugs? One reason is that 1 in every 10 people metabolizes drugs differently, owing to a newly discovered gene-based difference in liver cell function, say researchers at Ohio State University.

This little gene variant – which alters the level of a specific protein in the liver - will determine whether a particular dosage is too little, just right, or potentially toxic, and likely involves half of prescription drugs & chemo agents now on the market.

Each gene contains two alternative forms – called alleles – that are identical in most people. However, in this case, the researchers found that the activity level, or expression, of one allele differs from its partner allele in a single gene. That small difference is called a single nucleotide polymorphism, or SNP (pronounced snip). This SNP affects the gene’s protein-producing process, in turn lowering the level of an enzyme known as CYP3A4.

The faster a drug is processed, or metabolized, by this enzyme in the liver, the more quickly it is eliminated from that tissue and the body as a whole.

When this enzyme level is lowered by the presence of this SNP:

•  People are likely to require smaller doses of medicines that the enzyme metabolizes.

•  But this also means that higher doses of these same drugs can be dangerous to people with the mutation if those levels become toxic.

Study Focused on Cholesterol-Lowering (Statin) Drug Metabolism

The study - published online April 13 by The Pharmacogenomics Journal(1) - further showed that people with the mutation who take a certain class of cholesterol-lowering drugs [three commonly prescribed statin drugs - brand names Lipitor, Mevacor, and Zocor] do indeed require lower doses of these medications to achieve the same effect that higher doses produce in people without the SNP.

The researchers suggest that this mutation could serve as a molecular biomarker to aid doctors in clinical practice, affecting:

• Dosing requirements,

• Patients’ response to medications,

• And toxicity levels of numerous drugs, especially anti-cancer medications.

“With some cancer drugs, there is a very narrow therapeutic index, meaning that if doctors give patients a slightly higher dose, it will cause toxicity. We believe this same biomarker could be used to predict that toxicity threshold in cancer patients,” said Danxin Wang, a research scientist and adjunct assistant professor of pharmacology at Ohio State and lead author of the study.

Previous research already had determined that the levels of the CYP3A4 enzyme in humans could vary widely and that those varying levels influence people’s drug response and toxicity. But studies to date on why that is [had] been inconclusive.

Wang and colleagues obtained human liver samples from the Cooperative Human Tissue Network Midwestern Division. The scientists sought to identify mutations in the gene that makes the target enzyme in the liver. Wang noted that most sequence variations are meaningless because they don’t alter the activity of the encoded protein.

• Mutations can affect the proteins’ function directly by altering the protein sequence,

• Or they can work by changing the messenger RNA (mRNA), the intermediate step in producing the protein.

The latter is the case for the SNP discovered by Wang and colleagues.

The researchers used a technique that measures for what is known as allelic mRNA expression imbalance, which was developed in the Pharmacogenomics Core Lab, Program in Pharmacogenomics directed by Wolfgang Sadee, a co-author of this paper and a professor and chair of pharmacology at Ohio State.

The functional SNP that the scientists found was located on what is known as intron 6, a reference to a specific location within the gene that is typically overlooked when searching for a functionally relevant mutation. Further tests showed that the presence of this mutation in liver samples was associated with lower levels of the target enzyme.

Large Group Clinical Trial

The scientists then sought to test their findings in a clinical setting. Among the drugs metabolized by the CYP3A4 enzyme are three specific types of statins, or cholesterol-lowering drugs. Wang collaborated with cardiologist and co-author Glen Cooke, formerly of Ohio State’s Medical Center, to test for the presence of this intron 6 mutation as a biomarker in patients taking statins to control their cholesterol.

Of 273 patients in the group, 235 were taking one of the three statins metabolized by the target enzyme: atorvastatin (brand name Lipitor), lovastatin (brand name Mevacor) and simvastatin (brand name Zocor). The patients taking these three relevant statins were consuming doses ranging from 5 milligrams to 80 milligrams per day.

Patients were assessed for the presence of the intron 6 SNP as well as a number of other mutations related to liver enzymes.

• Among those taking the three relevant statins, 22 were carriers of the intron 6 mutation.

• The doses that these patients took were significantly lower than the doses taken by patients without the mutations.

• Cholesterol levels among all the patients were similar.

To further test the relationship, the researchers divided the doses into three levels – below 10 milligrams, 20 milligrams and more than 40 milligrams – and adjusted for the difference in potency among the drugs.

• They then determined that carriers of the intron 6 mutation were less likely to be taking a higher statin dose based on lower levels of the CYP3A4 enzyme present in their livers.

• The findings applied only to Caucasians because the number of African-American patients in the study was too small to have statistical merit, Wang said.

• The presence of the mutation in the white patients represented the expected frequency of this mutation in the overall population: about 10 percent.

Wang noted that using this SNP as a biomarker could reduce the guesswork associated with prescribing drugs. “Right now, because there are no biomarkers available to predict CYP3A4 activity, trial and error determines whether cholesterol goes down with the prescribed dose,” Wang said. “You never know who has what enzyme level, so you never really know what dose to give an individual if you don’t have a biomarker.”

The biomarker also could be applied to early clinical trials of new drugs, Wang said, by identifying research participants ahead of time who will not respond well to new formulations.

Using a genetic biomarker to determine patient response to drugs is simplified by the fact that once a biomarker is found in a blood sample, it is good for a lifetime of information. The same can’t be said for tests for liver enzymes or levels of drugs in the blood, which change all the time, Wang noted.

Though a test for this biomarker is not yet available, and similar tests currently cost several hundred dollars, Wang predicted that in the future, technology advances will make the test easy to conduct in clinical settings and affordable for patients.
1.“Intronic polymorphism in CYP344 affects hepatic expression and response to statin drugs”

Source: Ohio State University news release, May 10, 2010

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Vitamin D3 Extreme™ Optimized Curcumin Longvida®

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid

Natural Remedies

Coenzyme Q10 - The Energy Maker Coenzyme Q10 - The Energy Maker
How I Found My Long-Lost Energy How I Found My Long-Lost Energy
Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients
Block Acid Reflux to Prevent Esophageal Problems! Block Acid Reflux to Prevent Esophageal Problems!
"It's Not Easy Being Green" - But It Is Healthy

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map