ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Vitamin D supplementation could ease IBS symptoms

Increase Your Magnesium Intake

Top Tips to Boost Your Immunity

11 Amazing Health Benefits of Using Baking Soda

Nicotinamide riboside shows promise for treatment of Alzheimer’s disease

Exercise, calcium, vitamin D, and other factors linked with fewer injurious falls

Vitamin D3 Is a Powerhouse for Your Heart

Rhodiola — A Powerful Adaptogen That Boosts Vitality and Performance, Eases Depression and Combats B...

Curcumin Supplementation May Impart Long-Term Cognitive Benefits

Vitamin D deficiency during pregnancy can program obesity in children

Print Page
Email Article

Newly identified T cell defect a key to autoimmune disease & correctable in vitro - Columbia

  [ 11 votes ]   [ Discuss This Article ] • September 26, 2010

"We hope to develop new types of therapies that specifically target the defect in patients without damaging their normal immune functions."

Researchers at Columbia University Medical Center have identified a defect in the T cell regulatory pathway which normally controls autoreactive T cells that attack the body’s own tissues and organs. [T cells are white blood cells otherwise responsible for fighting 'nonself' infections.]

A majority of people with Type 1 diabetes who were tested in the study were found to have the newly-identified cellular/molecular defect, and the researchers were able to successfully correct the defect in-vitro. [In the lab.] Their study was published Sep 27 by The Journal of Clinical Investigation ["HLA-E-restricted regulatory CD*+ cells are involved in development and control of human autoimmune type 1 diabetes."]

“For decades, autoimmune diseases have been treated by reducing overall immune response. That’s been effective in extending life spans, but has been hard on the quality of life for many of those patients,” said study leader Hong Jiang, MD, PhD, an immunologist at Columbia University Medical Center.

“Now that we understand the specific mechanism of how regulatory T cells discriminate between ‘self’ and ‘non-self,’ and the cellular/molecular defect that makes that process go awry, we hope to develop new type[s] of therapies that specifically target the defect in patients without damaging their normal immune functions.”

A key feature of the immune system is its ability to discriminate between self and non-self.

• When any of the mechanisms that prevent the immune system from attacking itself break down, it can result in autoimmune disorders.

• Previous studies by this group have shown, in mice, that a particular type of immune T cells, known as CD8+ T cells, are essential to discriminate self from non-self.

• “Until now, it wasn’t known if this mechanism exists in humans,” said collaborating author Leonard Chess, MD, also from the Division of Rheumatology at Columbia. “But our research has confirmed these CD8+ T cells do, in fact, exist in humans, and that they play an important role in stopping the immune system from attacking itself.

• “And that understanding could lead to develop[ment of] novel therapies for a wide range of autoimmune diseases.”

The findings from Jiang and Chess are based on their original scientific theory known as the “avidity model” of peripheral T cell regulation. This theory provides the conceptual basis for how novel therapies can be designed to selectively target only the T cells that are harbingers of autoimmunity.

The Columbia researchers tested a number of patients with Type 1 diabetes, and found that the majority of them had a defect in CD8+ T cells that impacted their recognition of a common target structure known as HLA-E/Hsp60sp, previously identified by the researchers. That defect resulted in a failure of the CD8+ T cells to discriminate self from non-self. The high incidence of that defect in patients with Type 1 diabetes suggests these CD8+ T cells may play a major role in the development and control of the disease.

The researchers were successfully able to correct the defect in the CD8+ T cells from most of the diabetic patients in-vitro.
Current therapies for treating autoimmune disease and controlling rejection of transplants result in nonspecific suppression of normal function of the immune system. In contrast to these existing approaches (which systemically suppress the immune system):

• Therapies based on this new research are designed to selectively suppress immune responses to self-antigens without damaging the body’s normal anti-infection and anti-tumor responses.

• Another major advantage of the new therapy over antigen-specific strategies is that therapies can be developed independent of the knowledge of any particular self-antigens involved.

In addition, now that scientists have a greater understanding of the defect that leads to certain autoimmune diseases, assays could be developed to detect that defect, giving doctors an opportunity for early diagnosis, early treatment and eventually prevention of autoimmune diseases.

That would be particularly important, because, for example, patients with Type 1 diabetes often don’t learn they have the disease until significant damage has been done.

Assays might also be used to check the status of organ transplants, to control chronic rejection.

“This scientific breakthrough could lead to a wide range of therapeutic and diagnostic possibilities,” says Sara Gusik, a representative from Columbia Technology Ventures, the technology transfer office of Columbia University, which has already filed patent applications on this work.

Some of the advances could include vaccines or biotechnology agents for early diagnosis, early treatment, leading to possible cure and prevention of a variety of autoimmune diseases, including Type 1 diabetes, multiple sclerosis, thyroid disease, rheumatoid arthritis, and others.

The researchers envision that the new conceptual framework of the “avidity model” may also lead to solutions that address chronic graft rejection in organ transplantation.

Source: Columbia Technology Ventures news release Sep 24, 2010

Post a Comment

Featured Products From the ProHealth Store
Vitamin D3 Extreme™ FibroSleep™ Ultra ATP+, Double Strength

Article Comments

Be the first to comment on this article!

Post a Comment

Optimized Curcumin Longvida with Omega-3

Featured Products

Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get Energized with Malic Acid & Magnesium
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

The Crucial Role CoQ10 Plays in Fibromyalgia and ME/CFS The Crucial Role CoQ10 Plays in Fibromyalgia and ME/CFS
Soothe, Heal and Regulate Your Digestive System with Nutrient-Rich Aloe Vera Soothe, Heal and Regulate Your Digestive System with Nutrient-Rich Aloe Vera
Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed
The Fast-Acting Solution for Healthy Digestive Function The Fast-Acting Solution for Healthy Digestive Function
Nutrients to Combat the Modern Stress Epidemic Nutrients to Combat the Modern Stress Epidemic

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2018 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map