ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Scientifically-designed fasting diet lowers risks for major diseases

More evidence for calorie restriction’s longevity effect

Supplementation with vitamin D associated with improved testosterone, erectile function among middle...

A Little Zinc Goes a Long Way

Vitamin D deficiency increases risk of chronic headache

VIDEO: The Best Brain Foods That Help Increase Your Memory!

Get the Most From Your Green Tea

Iron (And More) For Lasting, Natural Energy

Metabolic syndrome increases the need for vitamin E

Supplement combo improves bone density, mood, in postmenopausal women

 
Print Page
Email Article

Oxygen Key in Transforming Adult Stem Cells from Fat into Cartilage

  [ 64 votes ]   [ Discuss This Article ]
www.ProHealth.com • February 7, 2003


In their ongoing research on turning adult stem cells isolated from fat into cartilage, Duke University Medical Center researchers have demonstrated that the level of oxygen present during the transformation process is a key switch in stimulating the stem cells to change.

Their findings were presented Feb. 2, 2003 at the annual meeting of the Orthopedic Research Society.

Using a biochemical cocktail of steroids and growth factors, the researchers have "retrained" specific adult stem cells that would normally form the structure of fat into another type of cell known as a chondrocyte, or cartilage cell. During this process, if the cells were grown in the presence of "room air," which is about 20 percent oxygen, the stem cells tended to proliferate; however, if the level of oxygen was reduced to 5 percent, the stem cells transformed into chondrocytes.

This finding is important, the researchers say, because this low oxygen level more closely simulates the natural conditions of cartilage, a type of connective tissue that cushions many joints throughout the body. However, since it is a tissue type poorly supplied by blood vessels, nerves and the lymphatic system, cartilage has a very limited capacity for repair when damaged. For this reason, the Duke investigators are searching for a bioengineering approach to correct cartilage injury.

"Our findings suggest that oxygen is a key determinant between proliferation and differentiation, and that hypoxia, or low oxygen levels, is an important switch that tells cells to stop proliferating and start differentiating,' said David Wang, a fourth-year medical student at Duke, who presented the results of the Duke research.

Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team, said that the combination of growth factors sets the adult stem cells on the right path, while controlling oxygen levels inspires the cells to more readily transform into chondrocytes. Without the growth factors, he said, changing oxygen levels has no effect on the cells.

"For us, the ultimate goal is the development of a bioreactor where we can very carefully control the physical and chemical environment of these cells as they transform," Guilak said. "The results of these experiments which demonstrated the role of oxygen levels in the process represent another important step in achieving this goal."

Two years ago at the Orthopedic Research Society meeting, the Duke team for the first time reported that cartilage cells can be created from fat removed during liposuction procedures. Not only were the researchers able to make cells change from one type into another, they grew the new chondrocytes in a three-dimensional matrix, a crucial advance for success in treating humans with cartilage damage.

In their latest experiments, the team used the materials collected from liposuction procedures performed on multiple human donors. These materials were then treated with enzymes and centrifuged until cells known as adipose-derived stromal cells remained. These isolated cells were infused into three-dimensional beads made up of a substance known as alginate, a complex carbohydrate that is often used as the basis of bioabsorbable dressings, and then treated with the biochemical cocktail.

Those cells grown in hypoxic conditions saw growth inhibited by as much as 44 percent, but saw as much as an 80 percent increase in chondrocyte differentiation.

"No one has looked at the role of hypoxia in the creation of chondrocytes, but it made sense since cartilage normally exists in an hypoxic environment," Wang said. "While we know oxygen plays a role, we don't know the mechanism. The next questions to answer are how the cells sense the level of oxygen around them and then turn that into a metabolic change."

The researchers anticipate that the first patients to benefit from this research would be those who have suffered some sort of cartilage damage due to injury or trauma. Farther down the line, they foresee a time when entire joints ravaged by osteoarthritis can be relined with bioengineered cartilage.

"We don't currently have a satisfactory remedy for people who suffer a cartilage-damaging injury," Guilak said. "There is a real need for a new approach to treating these injuries. We envision being able to remove a little bit of fat, and then grow customized, three-dimensional pieces of cartilage that would then be surgically implanted in the joint. One of the beauties of this system is that since the cells are from the same patients, there are no worries of adverse immune responses or disease transmission."

The Duke researchers have developed several animal protocols to test how this cartilage fares in a living system.



Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Energy NADH™ 12.5mg Ultra EPA  - Fish Oil

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products


Article Comments



Be the first to comment on this article!

Post a Comment


 
NAD+ Ignite with Niagen

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils

Natural Remedies

Secret Nutrient for Radiant Skin Secret Nutrient for Radiant Skin
Relief for Dry, Itchy Skin Caused by Fibromyalgia Relief for Dry, Itchy Skin Caused by Fibromyalgia
Physically and Mentally Exhausted? How to Restore Energy at Its Source Physically and Mentally Exhausted? How to Restore Energy at Its Source
Everything You Always Wanted to Know About Sleep But Were Too Tired to Ask Everything You Always Wanted to Know About Sleep But Were Too Tired to Ask
Guarding Against the Dangers of Vitamin D Deficiency Guarding Against the Dangers of Vitamin D Deficiency

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map