ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

High Speed Images Show How Cells Mobilize for Immune Response

  [ 58 votes ]   [ Discuss This Article ] • April 23, 2003

New high-speed imaging techniques are allowing scientists to show how a single cell mobilizes its resources to activate its immune response, a new research study shows.

Howard R. Petty, Ph.D., professor and biophysicist at the University of Michigan Health System's Kellogg Eye Center, has dazzled his colleagues with movies of fluorescent-lit calcium waves that pulse through the cell, issuing an intracellular call-to-arms to attack the pathogens within.

He explains that these high-speed images provide a level of detail about cell signaling that simply wasn't possible just a few years ago.

In the April 15 issue of the Proceedings of the National Academy of Sciences, Petty provides more detail on cell signaling, depicting what he calls the "molecular machinery" underlying the immune response. He has identified a sequence of amino acids (LTL) that controls the calcium wave pathway and, crucially, the ability of immune cells to destroy targets.

The findings are important because they could eventually lead scientists to design drugs based on the amino acid motif.

"Our clinical goal," explains Petty, "is to characterize the immune cell's signaling function so that we can interrupt it or somehow intervene when it begins to misfire." The process has implications for treating autoimmune diseases such as arthritis, multiple sclerosis, and the eye disorder uveitis.

Through images of phagocytosis, the process by which a cell engulfs and then destroys its target, Petty is able to track the movement of calcium waves as they send signals to key players in the immune response. The "calcium wave" is a stream of calcium ions coming into the cell, which is detected by the fluorescence emission of a calcium-sensing dye.

As a cell membrane begins to surround its target, two calcium waves begin to circulate. When the target is completely surrounded, one wave traveling around the cell's perimeter splits in two, with the second wave encircling the phagosome or sac-like compartment. This second wave allows the digestive enzymes to enter the phagosome and finally destroy the target.

When Petty introduced a mutation in the gene (FcyRIIA) that controls phagocytosis, he found that the calcium wave simply circled the cell and bypassed the phagosome altogether. As a result, the immune cell could engulf, but could not carry out the destruction of its target. This led him to conclude that the LTL sequence orchestrates the cell signaling process.

The sequence may also have a role in directing other cell activities, for example signaling the endoplasmic reticulum to form a spindle that connects the phagosome and the outer cell membrane. "The spindle seems to act as an extension cord that signals the calcium wave into the phagosome to finish the attack," suggests Petty.

Petty explains that many of these findings are possible thanks to high-speed imaging techniques that enable him to merge knowledge of physics with cell and molecular biology. He uses high sensitivity fluorescence imaging with shutter speeds 600,000 times faster than video frames.

"Before the advent of high-speed imaging, you could not ask many of these questions because we had no way to see the movement of calcium waves," he says. "With conventional imaging you ended up with a blur of calcium." By contrast, Petty's images resemble the movement of a comet across the night sky.

In the study reported in PNAS, Petty used leucocytes as a model for the process. The amino acid sequence is in the region of the gene FcyRIIA. He is currently studying the same phenomena in the eye, where phagocytosis disposes of the regularly-shed remnants of photoreceptor cells.

Post a Comment

Featured Products From the ProHealth Store
Mitochondria Ignite™ with NT Factor® FibroSleep™ Ultra EPA  - Fish Oil

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%

Natural Remedies

The Surprising Benefits of Probiotics - What You Didn't Know The Surprising Benefits of Probiotics - What You Didn't Know
Reversing Neurodegeneration with a New Magnesium Compound Reversing Neurodegeneration with a New Magnesium Compound
"It's Not Easy Being Green" - But It Is Healthy
Live Without Anxiety or Stress Live Without Anxiety or Stress
Repair Damaged Mitochondria and Reduce Fatigue Up to 45% Repair Damaged Mitochondria and Reduce Fatigue Up to 45%

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map