ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

Print Page
Email Article

Discovery of New Inflammatory Diseases; Arthritis Drug May Help

  [ 22 votes ]   [ Discuss This Article ]
By News release • • April 12, 2000

An international team of researchers has discovered genetic mutations underlying a newly recognized group of inherited inflammatory disorders. These illnesses, one of which was first described in a family of Irish and Scottish descent, are characterized by dramatic, sometimes month-long episodes of high fever, severe pain in the abdomen, chest, or joints, skin rash, and inflammation in or around the eyes. Some patients also develop a potentially fatal complication called amyloidosis, a disease in which there is deposition of a blood protein in vital organs.

Results of the study are published as the lead article in the April 2 issue of the journal Cell. Patients from seven different families with symptoms of these disorders were found to have mutations in a cell surface receptor (one or more cells that receive stimuli) for an inflammatory protein called tumor necrosis factor (TNF). Normally this receptor plays a role in the body's defenses against infectious and foreign agents. The Cell article explains that mutations in the receptor are responsible for a predisposition to severe inflammation triggered by daily life events such as emotional stress, minor trauma, or for seemingly no apparent reason. This discovery marks the first time that TNF receptor mutations have been tied to an inherited disease.

"These results are very important in helping us further understand the role of the TNF pathway in disease, and may lead to additional treatments, targeted at the cellular level, for many immune-related and inflammatory disorders," said Dr. Stephen I. Katz, Director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) in Bethesda, Maryland.

The senior author of the report is Dr. Daniel Kastner, a physician-scientist in the Intramural Research Program of NIAMS. Almost two years ago Kastner had successfully led an international consortium in the cloning of the gene for familial Mediterranean fever (FMF), another hereditary disorder of fever and inflammation that is common among people of Jewish, Arab, Armenian, and Turkish ancestry.

After the FMF gene was identified, it became clear that some families with periodic fevers do not have these FMF mutations. Several of these families have been noted to show a dominant mode of inheritance (FMF is recessive), and are not of Mediterranean ancestry. The symptoms most frequently reported by the affected individuals include fever lasting a week or more, accompanied by red and swollen eyes, migratory skin rashes, muscle tenderness, joint pain, and sometimes abdominal or chest pain. An unusually high incidence of inguinal hernia has been noted in affected men. Some patients also develop amyloidosis, which can be fatal.

One of the best-characterized families is of Irish and Scottish ancestry, and was first described by a research team at the Queen's Medical Centre in Nottingham, England. To contrast this condition from FMF and emphasize the Irish ancestry, they named it familial Hibernian fever (FHF). However, families with similar complaints have now been described in several ethnic groups. Initially, it was not clear whether all of these families had mutations in the same gene or in several related genes.

A key advance came about one year ago when two research teams independently identified a region of chromosome 12 associated with susceptibility to this form of periodic fever. One research team was headed by Dr. Michael McDermott, of the Royal London School of Medicine, formerly a postdoctoral fellow in Kastner's lab. The second team is in Adelaide, Australia, and subsequently a third team of researchers in Helsinki extended these results to a large Finnish family.

At a meeting hosted by Dr. Kastner last year, these research teams and scientists from Cork, Ireland, agreed to collaborate to determine which particular gene on chromosome 12 causes periodic fevers. The target region contained as many as 500 different genes, and the group prepared for a lengthy search. Among the possibilities was the gene for the TNF receptor 1 (TNFR1). This receptor is found embedded in the cell membranes of most cells in the body, where it acts as the transponder for TNF by receiving and transmitting signals that trigger an inflammatory response. The inflammatory signal can be turned off by removal of the TNF receptor from the surface of the cell, a process called "shedding." The portion that is released can suppress the inflammatory response by absorbing TNF before it reaches cells to transmit its signal. Even before TNFR1 was known to be located in the target region of chromosome 12, the Nottingham group had found low levels of soluble TNFR1 in the blood of Hibernian fever patients.

McDermott worked with Dr. Ivona Aksentijevich in the Kastner laboratory to screen the TNFR1 gene for sequence differences between patient and normal groups. On Thanksgiving Day, 1998, they found the first unmistakable changes in the DNA sequence. Ultimately, the consortium found six disease-associated mutations. Because these mutations were found in families of several different ethnic backgrounds, the authors have proposed the more neutral acronym TRAPS (TNF Receptor-Associated Periodic Syndrome) to include all of the families.

Drs. Jérôme Galon and John O'Shea, colleagues of Kastner's, have studied how these mutations cause disease. In a Louisiana family with TRAPS who were patients at NIAMS, these researchers found that the TNFR1 mutation prevented normal shedding of receptor after cellular activation. This could result in prolonged signaling by TNF at the cell surface, and diminished soluble TNFR1 in the blood to absorb TNF and block signaling.

Based on this analysis, Kastner and his colleagues believe that a synthetic form of TNF receptor might help to suppress the inflammation these patients experience. Fortuitously, a drug recently approved for the treatment of rheumatoid arthritis is in fact the shed form of a related TNF receptor. Researchers will now determine the potential usefulness of this drug in the treatment of TRAPS. Currently, many patients are treated with high doses of steriods, which can have serious side-effects and are not completely effective.

The photo on the cover of the journal shows massive deposits of amyloid in kidney of a patient who died of TRAPS. Kastner expressed hope that the discovery of TNFR1 mutations will help this patient's sister, niece, and 8 year-old daughter to avoid a similar fate. "It is absolutely incredible to live in a time when we have the tools to find the exact molecular cause of a baffling disease, and then to be able to do something about it," observes Kastner. "It's such a privilege to have this opportunity."

McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy J, Frucht D, Aringer M, Torosyan Y, Teppo A-M, Wilson M, Karaarslan HM, Wan Y, Todd I, Wood G, Schlimgen R, Kumarajeewa TR, Cooper SM, Vella JP, Amos CI, Mulley J, Quane KA, Molloy MG, Ranki A, Powell RJ, Hitman GA, O'Shea JJ, Kastner DL. Germline mutations in the extracellular domains of the 55 kDa TNF Receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97: 133-144, 1999.
Note: first authors Ivona Aksentijevich and Jérôme Galon of the NIAMS, and Michael McDermott of St. Bartholomew's and the Royal London Hospital School of Medicine and Dentistry contributed equally to this work. The senior author is Dr. Daniel L. Kastner.
Portions of this work were supported by the Research Advisory Committee of the Special Trustees, the Royal London Hospitals NHS Trust; the Jones Charitable Trust, Nottingham, UK; the National Health and Medical Research Council of Australia; and the Medical Research Funcs of Tampere and Helsinki University Hospitals, Tampere and Helsinki, Finland.

Source: The National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Merriam Webster’s Medical Desk Dictionary, Springfield: Merriam-Webster Inc., 1993.

Post a Comment

Featured Products From the ProHealth Store
FibroSleep™ Ultra EPA  - Fish Oil Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function

Natural Remedies

Repair Damaged Mitochondria and Reduce Fatigue Up to 45% Repair Damaged Mitochondria and Reduce Fatigue Up to 45%
Reversing Neurodegeneration with a New Magnesium Compound Reversing Neurodegeneration with a New Magnesium Compound
Ubiquinol - A More Advanced Form of the Energy Producing Nutrient CoQ-10 Ubiquinol - A More Advanced Form of the Energy Producing Nutrient CoQ-10
Complete and Natural Menopause Relief Complete and Natural Menopause Relief
Breaking Through the Mental Fog Breaking Through the Mental Fog

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map