ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

The Significance of Selenium

Print Page
Email Article

Study Finds Worm Genes Regulating Fat Storage, May Shed Light on Human Obesity

  [ 23 votes ]   [ Discuss This Article ] • January 17, 2003

Scientists at Massachusetts General Hospital (MGH) and their colleagues have scoured thousands of genes in the C. elegans worm and have come up with hundreds of promising candidates that may determine how fat is stored and used in a variety of animals. The findings, published in the Jan 16 issue of Nature, represent the first survey of an entire genome for all genes that regulate fat storage.

The research team led by Gary Ruvkun, PhD, of the MGH Department of Molecular Biology, and postdoctoral fellow Kaveh Ashrafi, PhD, identified about 400 genes encompassing a wide range of biochemical activities that control fat storage. These studies were conducted using the tiny roundworm Caenorhabditis elegans, an organism that shares many genes with humans and has helped researchers gain insights into diseases as diverse as cancer, diabetes, and Alzheimer's disease.

Many of the fat regulatory genes identified in this study have counterparts in humans and other mammals. "This study is a major step in pinpointing fat regulators in the human genome," says Ruvkun, who is a professor of Genetics at Harvard Medical School. "Of the estimated 30,000 human genes, our study highlights about 100 genes as likely to play key roles in regulation of fat levels,” he continued. Most of these human genes had not previously been predicted to regulate fat storage. This prediction will be tested as obese people are surveyed for mutations in the genes highlighted by this systematic study of fat in worms.

In addition, this study points to new potential therapies for obesity. Inactivation of about 300 worm genes causes worms to store much less fat than normal. Several of the human counterparts of these genes encode proteins that are attractive for the development of drugs. Thus, the researchers suggest that some of the genes identified could point the way for designing drugs to treat obesity and its associated diseases such as diabetes.

To discover this treasure trove of fat regulators, the researchers inactivated genes one at a time and looked for increased or decreased fat content in the worms. Through this time-consuming process, they identified about 300 worm genes that, when inactivated, cause reduced body fat and about 100 genes that cause increased fat storage when turned off. The identified genes were very diverse and included both the expected genes involved in fat and cholesterol metabolism as well as new candidates, some that are expected to function in the central nervous system.

About 100 of the 400 fat regulatory worm genes have counterparts in the human genome. "A number of these worm genes are related to mammalian genes that had already been shown to be important in body weight regulation. But more importantly, we identified many new worm fat regulatory genes, and we believe that their human counterparts will play key roles in human fat regulation as well," says lead author Ashrafi. "The work was done in worms because you can study genetics faster in worms than in other animal models, such as mice," says Ashrafi. "The model is a great tool for discovering genes."

About 600 million years ago the common ancestor to worms and humans also stored fat and regulated its feeding and metabolism based on communication between its stored fat and the brain centers that control feeding. Both the worm and humans have inherited this complex system from that ancestor. It is likely, the researchers say, that failure of these circuits within our bodies is one of the underlying causes of obesity and that drugs can be developed to correct these missing circuits of metabolic communication. The challenge now is for scientists to unravel these regulatory pathways and prioritize the relevant genes in animal models, such as the worm and the mouse.

The researchers also found that some of the identified genes were effective at regulating fat levels in all strains of C. elegans but others could only regulate fat in certain worm obesity syndromes caused by brain defects. The brain also is an important player in the regulation of human fat. Some human obesity syndromes are due to defective assessment of fat levels by the brain that lead to a continuous voracious appetite. Some of the newly identified worm fat regulatory genes are predicted to function in its nervous system, as are the human counterparts to these worm genes.

Post a Comment

Featured Products From the ProHealth Store
Energy NADH™ 12.5mg Ultra EPA  - Fish Oil Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils

Natural Remedies

Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery
How to Jump-start and Sustain Energy Production in CFS How to Jump-start and Sustain Energy Production in CFS
When a Negative is Positive - Goodnighties Recovery Sleepwear When a Negative is Positive - Goodnighties Recovery Sleepwear
Herbal Inflammation Management for Whole Body Health Herbal Inflammation Management for Whole Body Health
Coconut Oil - Healthy Gifts from the 'Tree of Life' Coconut Oil - Healthy Gifts from the 'Tree of Life'

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map