ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Relief for IBS, Colitis, Crohn’s And More

B Vitamins May Protect Against Damaging Effects of Air Pollution, and Improve Cognition and Psychiat...

Restless Leg Syndrome (RLS) - are you running a marathon each night?

Can Magnesium Relieve Your Tinnitus?

Resveratrol Proven to Slow Brain Aging

Cassia Bark Oil: Why It's Valuable in Traditional Chinese Medicine

Fruits and vegetables' latest superpower? Lowering blood pressure

Neroli Oil: The Pleasantly Fragrant Citrus Oil

Prenatal vitamin D could help prevent autism in children

Magnesium Protects Against Stroke, Heart Disease and Diabetes

 
Print Page
Email Article

Study Furthers Understanding of Critical Alzheimer's Disease Gene

  [ 30 votes ]   [ Discuss This Article ]
By Press Release by the National Institute on Aging • www.ProHealth.com • April 7, 1999


Researchers have cracked part of the code for an important gene function in familial Alzheimer's disease (FAD), an early-onset type of AD. Alzheimer's disease is the most common cause of dementia. Working with cells in culture that had been altered to overexpress the amyloid precursor protein (APP), the researchers were able to document that expression of a mutant form of the presenilin-1 (PS-1) protein caused a significant reduction in the amount of amyloid formed. This continuing study of the mechanisms of plaque formation, researchers believe, moves them ever closer to the possible development of novel drugs to intervene in the processes leading up to Alzheimer's dementia.

Naturally occurring mutations in PS-1 are found in about 40 percent of people with FAD. Previous studies have suggested that these inherited PS-1 gene mutations increase the amount of amyloid clipped out from the larger amyloid precursor protein, but no one could determine how that clipping occurred. Researchers named the elusive and not-well-understood enzyme that is involved in the clipping, gamma secretase. The current research suggests that either PS-1 may be the long sought gamma-secretase, or that PS-1 is essential for gamma secretase's ability to clip amyloid.

The study of mutated PS-1 protein was published in the April 8, 1999 issue of Nature by Dr. Dennis J. Selkoe and his colleagues at Harvard Medical School and Brigham and Women's Hospital, Boston, and the University of Tennessee, Memphis. Their work focuses on the chemical events that may lead to the development of brain damage and the symptoms of dementia. The National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), two components of the National Institutes of Health (NIH), funded the study.

In their search to explain why the amyloid fragments clump into plaques, which surround the brain cells of Alzheimer's disease patients, Dr. Selkoe's group gained an insight into the interaction of two key molecules involved in amyloid formation. When they altered the sequence of amino acids of the presenilin protein from the normal sequence in two critical locations, buried within the cell membrane, amyloid formation was reduced.

According to Dr. D. Stephen Snyder, who directs studies of the Etiology of Alzheimer's Disease at NIA's Neuroscience and Neuropsychology of Aging Program, "These studies have implications for the treatment of AD and related disorders of amyloid accumulation. If this gamma-secretase finding proves true, it could lead to significant advances in therapeutics research by showing us how to intervene before plaques form."

Source: National Institute on Aging
Press Release
April 7,1999

Reference:

Michael S. Wolfe, Weiming Xia, Beth L. Ostaszewski, Thekla S. Diehl, W. Taylor Kimberly, and Dennis J. Selkoe. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398, (513-517).



Post a Comment

Featured Products From the ProHealth Store
Mitochondria Ignite™ with NT Factor® Optimized Curcumin Longvida® FibroSleep™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products


Article Comments



Be the first to comment on this article!

Post a Comment


 
NAD+ Ignite with Niagen

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium

Natural Remedies

The New Dual Activation Pain Relief Cream The New Dual Activation Pain Relief Cream
Stop Bacteria With Nature's Antibiotics Stop Bacteria With Nature's Antibiotics
Prepare Yourself for Cold & Flu Season Prepare Yourself for Cold & Flu Season
Nutrients to Combat the Modern Stress Epidemic Nutrients to Combat the Modern Stress Epidemic
Vitamin K-2 – A Key Player in Cardiovascular and Bone Health Vitamin K-2 – A Key Player in Cardiovascular and Bone Health

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map