ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

Study Furthers Understanding of Critical Alzheimer's Disease Gene

  [ 30 votes ]   [ Discuss This Article ]
By Press Release by the National Institute on Aging • • April 7, 1999

Researchers have cracked part of the code for an important gene function in familial Alzheimer's disease (FAD), an early-onset type of AD. Alzheimer's disease is the most common cause of dementia. Working with cells in culture that had been altered to overexpress the amyloid precursor protein (APP), the researchers were able to document that expression of a mutant form of the presenilin-1 (PS-1) protein caused a significant reduction in the amount of amyloid formed. This continuing study of the mechanisms of plaque formation, researchers believe, moves them ever closer to the possible development of novel drugs to intervene in the processes leading up to Alzheimer's dementia.

Naturally occurring mutations in PS-1 are found in about 40 percent of people with FAD. Previous studies have suggested that these inherited PS-1 gene mutations increase the amount of amyloid clipped out from the larger amyloid precursor protein, but no one could determine how that clipping occurred. Researchers named the elusive and not-well-understood enzyme that is involved in the clipping, gamma secretase. The current research suggests that either PS-1 may be the long sought gamma-secretase, or that PS-1 is essential for gamma secretase's ability to clip amyloid.

The study of mutated PS-1 protein was published in the April 8, 1999 issue of Nature by Dr. Dennis J. Selkoe and his colleagues at Harvard Medical School and Brigham and Women's Hospital, Boston, and the University of Tennessee, Memphis. Their work focuses on the chemical events that may lead to the development of brain damage and the symptoms of dementia. The National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), two components of the National Institutes of Health (NIH), funded the study.

In their search to explain why the amyloid fragments clump into plaques, which surround the brain cells of Alzheimer's disease patients, Dr. Selkoe's group gained an insight into the interaction of two key molecules involved in amyloid formation. When they altered the sequence of amino acids of the presenilin protein from the normal sequence in two critical locations, buried within the cell membrane, amyloid formation was reduced.

According to Dr. D. Stephen Snyder, who directs studies of the Etiology of Alzheimer's Disease at NIA's Neuroscience and Neuropsychology of Aging Program, "These studies have implications for the treatment of AD and related disorders of amyloid accumulation. If this gamma-secretase finding proves true, it could lead to significant advances in therapeutics research by showing us how to intervene before plaques form."

Source: National Institute on Aging
Press Release
April 7,1999


Michael S. Wolfe, Weiming Xia, Beth L. Ostaszewski, Thekla S. Diehl, W. Taylor Kimberly, and Dennis J. Selkoe. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398, (513-517).

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Mitochondria Ignite™ with NT Factor® FibroSleep™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health

Natural Remedies

Restore Youthful Cognition and Well-Being Restore Youthful Cognition and Well-Being
Stop Bacteria With Nature's Antibiotics Stop Bacteria With Nature's Antibiotics
Secret Nutrient for Radiant Skin Secret Nutrient for Radiant Skin
Optimize Your Immune System Naturally: Thymic Protein A Optimize Your Immune System Naturally: Thymic Protein A
Relief for Dry, Itchy Skin Caused by Fibromyalgia Relief for Dry, Itchy Skin Caused by Fibromyalgia

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map