ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

SURVEY: Cognitive Impairment II

Natural Bladder Control, Go Less and Live More

Vital Molecule Increases Cellular Energy and Improves Cognitive Function

Top Vitamin and Mineral Deficiencies — Are You at Risk?

How Pomegranate May Protect Against Cancer

Omega Fix for Obesity: How the Right Fats Fight Fat

Trimming the spare tire: Canola oil may cut belly fat

The Onion: Cancer Fighter and Food Preserver

Fighting Heartburn and Gerd Naturally – And Safely!

Safely Reduce a Common Cause of Stomach Distress

 
Print Page
Email Article

Research suggests how steroids cause diabetes and hypertension; liver plays critical role

  [ 88 votes ]   [ Discuss This Article ]
www.ProHealth.com • July 18, 2003


St. Louis, July 17, 2003 -- Steroids called glucocorticoids are critical for treating diseases such as asthma, arthritis and pain syndromes, but they also can trigger diabetes and hypertension. Research at Washington University School of Medicine in St. Louis now shows why these commonly used drugs have such dangerous side effects.

The team found that a protein called peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is critical in this process and that the liver plays a key role. The findings help explain the high incidence of diabetes and hypertension in obese individuals, a group that normally produces significantly more glucocorticoids than people of average weight.

"Glucocorticoids are very effective for treating many diseases," says first author Carlos Bernal-Mizrachi, M.D., instructor of medicine. "If we can understand the mechanisms by which these drugs cause side effects like diabetes and hypertension, we may be able to intervene and prevent these disorders in people who are taking steroids and in people who are obese."

The study appears online and in the August issue of the journal Nature Medicine. Bernal-Mizrachi led the study, in collaboration with Clay F. Semenkovich, M.D., professor of medicine and of cell biology and physiology and director of the Division of Endocrinology, Metabolism and Lipid Research, and Daniel P. Kelly, M.D., professor of medicine, of molecular biology and pharmacology and of pediatrics and director of the Center for Cardiovascular research.

Hypertension (persistent high blood pressure) and diabetes (chronic insulin deficiency) both are related to insulin-resistance, in which the body does not properly respond to insulin.

PPAR-alpha is found in the liver, kidney, muscles, blood vessels and other organs. Since it is activated by fatty acids and since glucocorticoids alter fatty acid processing, Bernal-Mizrachi and his colleagues hypothesized that the two may act together to produce the disease-causing side effects. They therefore compared mice lacking PPAR-alpha and LDLR (the receptor for low density lipoprotein, also known as "bad cholesterol") with mice lacking only LDLR.

The team found that when given the glucocorticoid dexamethasone, mice lacking only LDLR had increased levels of insulin, fasting glucose and leptin, all signs of diabetes. The animals also became less hypoglycemic when given insulin, suggesting that they were developing insulin resistance, the precursor to diabetes. Mice lacking both LDLR and PPAR-alpha showed no signs of diabetes.

Surprisingly, dexamethasone also increased blood pressure in mice that had PPAR-alpha but not LDLR; it did not have an affect on blood pressure in mice lacking both PPAR-alpha and LDLR.

"Somehow, animals missing PPAR-alpha were protected from developing diabetes and hypertension," Semenkovich says.

The team then replaced PPAR-alpha in the liver in mice lacking both PPAR-alpha and LDLR. The animals developed the same symptoms of diabetes and hypertension (high blood pressure) when chronically treated with dexamethasone as mice with normal levels of PPAR-alpha throughout the body.

The team also examined human liver cells in a petri dish. When PPAR-alpha was activated and steroids were added, expression of genes related to glucose production tripled.

"The scientific community hasn't fully appreciated the potentially important role of the liver in these conditions," Semenkovich says. "These results strongly suggest that the liver is the key to controlling blood pressure and glucose, and our preliminary evidence with human liver cells strongly suggests that the results in mice are relevant to human disease."

Next, Semenkovich, Bernal-Mizrachi and their colleagues plan to investigate the role of PPAR-alpha in healthy humans.

"We believe that diabetes, hypertension and many other disorders of western civilization are related to metabolism of fatty acids, not just glucose metabolism," Semenkovich says. "These results support that theory, because PPAR-alpha is activated by fatty acids and appears to be important in the development of these problems. Hopefully, studying this process in humans will lead to ways of preventing these potentially adverse effects of steroids and help us understand why people who get overweight have many of the symptoms of excess production of glucocorticoids."



Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nature Medicine, August, 2003.

Funding from the National Institutes of Health, the Clinical Nutrition Research Unit and the Diabetes Research and Training Center supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.



Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Optimized Curcumin Longvida® Vitamin D3 Extreme™


Article Comments



Be the first to comment on this article!

Post a Comment


 
Natural Pain Relief Supplements

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Secret Nutrient for Radiant Skin Secret Nutrient for Radiant Skin
Clinically Studied Joint Relief Product for FM & ME/CFS Clinically Studied Joint Relief Product for FM & ME/CFS
Coping When Colds or Flu Catch Up with You Coping When Colds or Flu Catch Up with You
Thyroid Health and Fibromyalgia Thyroid Health and Fibromyalgia
Coconut Oil - Healthy Gifts from the 'Tree of Life' Coconut Oil - Healthy Gifts from the 'Tree of Life'

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map