ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Relief for IBS, Colitis, Crohn’s And More

B Vitamins May Protect Against Damaging Effects of Air Pollution, and Improve Cognition and Psychiat...

Restless Leg Syndrome (RLS) - are you running a marathon each night?

Can Magnesium Relieve Your Tinnitus?

Resveratrol Proven to Slow Brain Aging

Cassia Bark Oil: Why It's Valuable in Traditional Chinese Medicine

Fruits and vegetables' latest superpower? Lowering blood pressure

Neroli Oil: The Pleasantly Fragrant Citrus Oil

Prenatal vitamin D could help prevent autism in children

Magnesium Protects Against Stroke, Heart Disease and Diabetes

Print Page
Email Article

Study may influence how clinical assessments of brain injury are conducted in future

  [ 147 votes ]   [ Discuss This Article ] • October 3, 2003

Damage to the frontal lobes can affect a person's ability to 'stay on the job'

Toronto, CANADA -- A new study sheds light on why brain injury patients have difficulty performing tasks consistently -- a necessary requirement for holding a job. The findings may influence how clinical assessments of brain injury are conducted in future, encouraging doctors to pay closer attention to 'variability' of performance as a marker for impairment.

The study is published in the November issue of the journal BRAIN. It was led by Dr. Donald Stuss, Director of The Rotman Research Institute at Baycrest Centre for Geriatric Care, with Dr. Michael Alexander, Associate Clinical Professor, Neurology, Harvard Medical School in Cambridge, Mass.

"Our study has shown that damaging certain areas of the frontal lobes can impair our ability to perform consistently -- a key requisite for holding a job," says Dr. Stuss. "Many people who suffer brain injuries from an accident, tumor, or stroke for example, may make considerable progress in their rehabilitation, but somehow have difficulty in daily life. The one area that may give them trouble -- performing consistently on tasks, both within a task and at different times -- may be the most difficult and nuanced for doctors to pick up on with a 'single' clinical assessment. The patient may need to be assessed more than once over a period of time. Inconsistency over repeated assessments is an important measure of impairment."

The inspiration for this frontal lobe study came about 15 years ago when Dr. Stuss and his colleagues were testing brain injury patients in studies. They discovered that some patients would perform normally on the first test, but then one week later perform poorly on the same test. Because the data was not replicable over the short interval, it was assumed to be statistical "noise" -- that is, scientifically unimportant. The results had to be rejected due to inability to replicate the findings. Fortunately, a parallel study in mild head injury patients who were tested not twice but five times over several weeks on the same test, revealed similar variability in performance.

"What we came to realize was that what we had been taught for years as the death knell of an experiment -- the lack of replicable findings -- in certain circumstances is the finding itself. The "noise" in the data was the data! It was the source of considerable information for us," says Dr. Stuss. This realization became the basis for developing the study that is now published in BRAIN.

Since the earlier publications, numerous studies have confirmed reduced consistency in patients with traumatic brain injury at all levels of severity, with or without focal frontal lesions. Performance variability has also been reported in dementing illness, attention deficit disorder and schizophrenia. However, there has been no direct experiment to determine if lesions in 'any' focal region of the frontal lobes are critical for performance variability. Dr. Stuss wanted to investigate whether different frontal lobe lesions were particularly important in impairing sustained attention and task performance. The importance of this study is that it addresses the mechanisms underlying the observation, a necessary step in developing targeted rehabilitation.

Thirty-six patients who had suffered brain injuries as a result of trauma, stroke, hemorrhage or removal of a benign tumor, were part of the study. The patients were divided into five groups depending on the location of their primary lesion. Eleven patients had lesions located in nonfrontal regions. The other 25 patients had focal frontal lesions and were divided into four groups based on the location of their primary lesions -- left dorsolateral frontal, right dorsolateral frontal, inferior medial, and superior medial. The five patient groups were compared to 12 normal, control subjects.

The subjects completed four different reaction time computer tasks that ranged from simple to increasingly more complex; the latter supposedly demanding more involvement from the executive functions located in the frontal regions of the brain. Each task required the subject to press a button with their dominant hand when they saw a particular target image that they were told to watch for. There were four primary image shapes -- circle, square, triangle and cross. They were alerted to a particular target to watch for that had specific characteristics of shape, color and internal texture -- for example a red circle with horizontal lines. Subjects were instructed to respond as quickly and as accurately as possible when they saw this target. If they saw a non-target image, they were to press the other button that was in their non-dominant hand. This testing session was repeated on two additional occasions, each a week apart. Researchers focused on two major measures: a) the variability while doing a task over time at one sitting; and b) "consistency of performance" -- the ability of an individual to perform comparably across different testing sessions. Results were correlated to task complexity as well as location of brain lesion.

Study's findings:
While there was minimal variability with nonfrontal lesions, all of the frontal patient groups (except the inferior medial) had some degree of inconsistency of performance. Those with frontal lesions in the dorsolateral (right and left) and superior medial areas, showed the most performance variability -- even on the simplest tasks. "We found that individual variability is significantly increased in most patients with frontal injury, but the effects are not uniform across all frontal regions," says Dr. Stuss. "Most importantly, we discovered that different frontal brain regions result in variability for different reasons."

Investigators made four conclusions from the study: (1) Performance variability may be caused by damage to specific brain regions. Lesions in the frontal lobes, in particular, impair stability of behavior; (2) These fluctuations of performance in an individual are not simply statistical noise but an important measure of impairment; (3) Different types of variablity are affected by damage in different brain regions; (4) Task factors have important effects on demonstration of variability.

These results provide a means for investigating why some patients seem to recover fully, yet are not able to hold down a job. Understanding that different brain regions result in variability of performance for different reasons is the first step in treating these disorders. Dr. Stuss says future research should look more closely at the interaction of frontal lesion involvement, specific task demands and task complexity.

Funding for the study was provided by the Canadian Institutes of Health Research. Dr. Stuss's team included Dr. Michael Alexander, Harvard Medical School; and statistician Malcolm Binns and post-doctoral student Kelly Murphy, both with The Rotman Research Institute at Baycrest.

Post a Comment

Featured Products From the ProHealth Store
Optimized Curcumin Longvida® Ultra ATP+, Double Strength Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

NAD+ Ignite with Niagen

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Everything You Always Wanted to Know About Sleep But Were Too Tired to Ask Everything You Always Wanted to Know About Sleep But Were Too Tired to Ask
Milk Thistle: Trusted Support for Health & Healing in a Toxic World Milk Thistle: Trusted Support for Health & Healing in a Toxic World
Probiotic Mint Promotes Healthy Gums & Teeth, Freshens Breath and Whitens Teeth Probiotic Mint Promotes Healthy Gums & Teeth, Freshens Breath and Whitens Teeth
Sleep Like a Baby in Nature's Cradle Sleep Like a Baby in Nature's Cradle
Coenzyme Q10 - The Energy Maker Coenzyme Q10 - The Energy Maker

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map