ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

The Significance of Selenium

Print Page
Email Article

New Understanding of Insulin’s Complexities Needed to Conquer Diabetes

  [ 63 votes ]   [ Discuss This Article ] • December 5, 2003

December 5, 2003— Major advances in signal-transduction research have contributed greatly to understanding the complexities of insulin action, which, when disrupted, can lead to diabetes and other health problems. According to Howard Hughes Medical Institute investigator Morris F. White, however, further progress is needed to integrate our expanding knowledge with human physiology if the diabetes epidemic that is escalating throughout the world is to be conquered.

It is important to understand the molecular links between obesity, peripheral insulin action and the function of insulin-producing beta cells, said White, who is at the Joslin Diabetes Center and Harvard Medical School. White, the author of a Viewpoints article published in the December 5, 2003, issue of the journal Science , argues that a much better understanding of insulin-regulatory pathways is needed to distinguish between pathways that can be manipulated to enhance health and those whose manipulation would endanger health.

Insulin, produced by beta cells in the pancreas, is best known for its role in regulating glucose levels in the bloodstream. However, insulin signaling also controls embryonic growth and development, reproduction, and appetite regulation. The widespread influence of insulin and the vulnerability of its signaling pathways to inhibition make understanding insulin signaling an important research goal, White noted.

Improper regulation of these pathways can lead to a range of systemic disorders. The most recognized of these, diabetes, comes in two basic forms: type 1 diabetes usually occurs in children and is caused by an absolute lack of insulin; and type 2 diabetes, which historically occurred in middle age, but today appears with alarming frequency in children and adolescents. It is caused mainly by insulin resistance in tissues and is closely associated with obesity. In addition, defects in insulin signaling are linked to hypertension, high levels of cholesterol and other lipids, heart disease, kidney disease, female infertility and neurodegeneration.

In their research, White and his colleagues have discovered components of key insulin-controlled signaling pathways. For example, they identified proteins mediating insulin signaling, which are known as insulin receptor substrate proteins—IRS1 and IRS2. IRS1 controls body growth and peripheral insulin action, whereas IRS2 regulates brain growth, body-weight control, glucose homeostasis and female fertility, researchers have found. The IRS2 branch of the pathway might be a linchpin to understand the link between obesity, insulin resistance and beta-cell failure that causes type 2 diabetes.

“We found that IRS2 not only mediates insulin action in muscle, liver and fat, but that it is also essential for beta-cell function,” said White. “That was one of the first times it was recognized that the same pathways that are failing and causing insulin resistance are also critical in beta cells to their ability to detect blood glucose and secrete insulin. IRS2 gave us a molecular link to explain why beta cells would fail at the same time peripheral insulin resistance is happening, and could start to explain type 2 diabetes.”

The dual roles of insulin pathways in the regulation, growth and survival of insulin-secreting beta cells creates a surprisingly fragile “closed loop system,” said White. “It seems absolutely the wrong way for nature to build such a critical system,” he said. “The way it's set up, beta cells are fundamentally at risk to fail when they are most needed to compensate for insulin resistance—they can't secrete more insulin, so you develop diabetes. When you look at it this way, it is no longer mysterious why type 2 diabetes is such a prevalent disease,” White said.

Even the complexity of the cell's insulin receptors themselves presents scientific conundrums. The intricacy in the receptors arises because, depending on the tissue in which it is initially produced, the messenger RNA for insulin receptors can be processed in two different ways, leading to different forms of the receptor protein. One form predominates in the fetus and apparently fosters normal growth, whereas the other predominates in adults and functions in the normal insulin signaling pathways in muscle, liver, fat and brain tissue. While much is understood about these two forms of the receptor, said White, much more research is needed to sort out how they work in normal development and in disease. For example, he pointed out, some forms of muscular dystrophy are associated with insulin resistance due to an inability to produce the correct receptor form.

Another gap in understanding insulin's effects, he said, lies in the link between inflammation and insulin resistance. When properly activated, the inflammatory process limits damage caused by various injuries and infections, and the insulin resistance that it causes facilitates the delivery of nutrients needed to repair the injury. But chronic inflammation owing to environmental stress, chronic infection or aging also causes insulin resistance that harms the body. An important area of investigation is determining whether better management of chronic inflammation can improve insulin action and production, and whether it might also help restore appetite control to reduce obesity.

“It's clear that insulin signaling pathways, especially the function of IRS1 and IRS2 in many tissues, are inhibited by what we call pro-inflammatory cytokines. These are circulating proteins that are produced during the inflammatory processes,” said White. “Or, they could be produced during other kinds of nebulous physiological stress that arise in some little-understood way from aging, diet or other lifestyle factors.” Importantly, he said, research has found that pro-inflammatory substances are produced by fat tissue, further suggesting that obesity can promote diabetes.

The close association between obesity, insulin resistance, and progression to type 2 diabetes is a serious health problem. Exercise and weight loss improve insulin action and reduce the demand for insulin, revealing a first-line defense that everyone can use in their fight against diabetes, said White. Developing drugs that increase insulin signaling by stimulating IRS2 synthesis or promoting its activity might be a useful approach to combating this public health issue. However, there is evidence that too much insulin activity may be detrimental, so “future work must better resolve the network of insulin responses that are generated in various tissues and attempt to distinguish the ones that prolong health from the ones that might diminish it,” he said.

For example, said White, studies in the roundworm C. elegans have revealed that genetically engineering insulin resistance in the animals actually increases their lifespan, which is in contrast to the fact that insulin resistance in higher organisms causes disease that reduces lifespan.

“So we have to be careful. Worm studies are also telling us that too much insulin signaling might be bad—so there may be insulin signaling pathways in us, that if fully activated might actually cause disease,” said White. “The truth lies in-between. Restoring insulin action in people with type 2 diabetes might be a double-edged sword. Now we really need to figure out which pathways will improve health, otherwise we might just come along and rev up insulin action and cause damage,” he said.

©2003 Howard Hughes Medical Institute

Post a Comment

Featured Products From the ProHealth Store
Ultra EPA  - Fish Oil Vitamin D3 Extreme™ Ultra ATP+, Double Strength

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health

Natural Remedies

Red Yeast Rice - Natural Option for Supporting Healthy Cholesterol Red Yeast Rice - Natural Option for Supporting Healthy Cholesterol
A Hard-Working Molecule that May Help Ease Pain & Brighten Mood A Hard-Working Molecule that May Help Ease Pain & Brighten Mood
Breaking Through the Mental Fog Breaking Through the Mental Fog
Sunshine Vitamin Has D-lightful Health Benefits Sunshine Vitamin Has D-lightful Health Benefits
The Revolutionary 'Good Fat' That Promotes Heart, Brain, Bone and Joint Health The Revolutionary 'Good Fat' That Promotes Heart, Brain, Bone and Joint Health

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map