ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

On-and-off fasting helps fight obesity, study finds

Can Pomegranates Slow Aging?

Calorie restriction promotes longevity through effects on mitochondrial network

Discover Why Ashwagandha Can Be Used for Stress and Anxiety

Lower magnesium levels linked with increased mortality risk during up to 40 years of follow-up

A spoonful of oil: Fats and oils help to unlock full nutritional benefits of veggies, study suggests

Higher resveratrol dose linked to lower glucose levels in type 2 diabetics

How Can You Benefit From Vitamin B12?

Drug can dramatically reduce weight of people with obesity

What Is Bitter Orange?

 
Print Page
Email Article

Young People Prone to Type 2 Diabetes Exhibit Alterations in Mitochondrial Activity

  [ 143 votes ]   [ Discuss This Article ]
www.ProHealth.com • February 16, 2004


New Haven, Conn. -- Researchers at Yale have found that decreased activity in muscle mitochondria, the powerhouses of the cell, may be a major factor in the development of type 2 diabetes in young, lean offspring of parents with the disease. They demonstrated a potential mechanism for the accumulation of fat in muscle cells of young, lean, insulin-resistant children of parents with type 2 diabetes by comparing them with insulin-sensitive control subjects matched for age, weight, height and activity. "There is a strong relationship between lipid content in the muscle and insulin resistance in skeletal muscle," said principal investigator Gerald I. Shulman, M.D., professor of internal medicine and cellular & molecular physiology at Yale School of Medicine. "Insulin resistance is the best predictor for whether someone will eventually develop type 2 diabetes." Using proton magnetic resonance spectroscopy (MRS), a safe, noninvasive method that does not involve any ionizing radiation, researchers found that insulin resistance in muscle of the diabetic offspring was accompanied by an increase in muscle cell lipid content. Shulman, an investigator at the Howard Hughes Medical Institute, led his group to distinguish whether the increase in muscle cell triglycerides was the result of increased delivery of fatty acids to muscle cells from the fat stored in "fat cells" (adipocytes), or the result of a decreased rate of fat oxidation by the mitochondria in the muscle cells. They measured rates of fatty acid release from adipocytes and found no differences between the two groups. In contrast, using phosphorus MRS they found a 30 percent reduction in the rate of mitochondrial energy production in the muscle of insulin resistant subjects compared to the control group. "These data support the hypothesis that insulin resistance in young, lean, healthy insulin resistant offspring of patients with type 2 diabetes may be due to an inherited defect that causes decreased mitochondrial activity and predisposes them to accumulate fat inside their muscle cells and develop insulin resistance," said Shulman. Shulman and his team are now investigating whether the decrease is due to a reduced number of mitochondria and/or reduced mitochondrial function and whether these abnormalities can be reversed with exercise training. "These results support the hypothesis that nuclear encoded genes that regulate mitochondrial biogenesis may be an important genetic cause of type 2 diabetes and that mitochondrial biogenesis represents a novel therapeutic target for treatment and possible prevention of type 2 diabetes," said Shulman. Other authors on the study included Kitt Falk Petersen, M.D., assistant professor of internal medicine at Yale; Sylvie Dufour, Douglas Befroy and Rina Garcia. Citation: New England Journal of Medicine, February 12, 2004; vol. 350, issue 7 pp. 664-71. Source: EurekAlert.org (this is a press release).



Post a Comment

Featured Products From the ProHealth Store
Vitamin D3 Extreme™ Ultra ATP+, Double Strength FibroSleep™


Article Comments



Be the first to comment on this article!

Post a Comment


 
Optimized Curcumin Longvida with Omega-3

Featured Products

Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function

Natural Remedies

The Crucial Role CoQ10 Plays in Fibromyalgia and ME/CFS The Crucial Role CoQ10 Plays in Fibromyalgia and ME/CFS
The Remarkable Benefits of Reishi Medicinal Mushrooms The Remarkable Benefits of Reishi Medicinal Mushrooms
When a Good Night's Sleep Is Just a Daydream... When a Good Night's Sleep Is Just a Daydream...
Anti-Inflammatory Properties of Tart Cherry Anti-Inflammatory Properties of Tart Cherry
The Big Blue Fish that Helps Chase the Blues Away The Big Blue Fish that Helps Chase the Blues Away

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map