ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Vitamin D supplementation extends life in mouse model of Huntington's disease

What’s Fenugreek Good For?

Omega-3 fatty acid stops known trigger of lupus

Print Page
Email Article

Abstract: Researchers reveals how certain chemicals protect the brain against cell damage

  [ 200 votes ]   [ Discuss This Article ] • November 21, 2005

Source: Johns Hopkins Medical Institutions Study could lead to better treatments for Alzheimer's disease A study by Johns Hopkins scientists has revealed that stimulating brain cell receptors for certain hormone-like chemicals in brain cells called prostaglandins can protect the cells from amyloid â-peptide 42 (Aâ1-42), a compound that has been linked to brain cell death and Alzheimer's disease (AD). Prostaglandin E2 (PGE2) is produced via the action of the COX-2 enzyme, which can contribute to brain injury. In spite of the negative effects of COX-2, ongoing studies have shown that PGE2 can actually provide some protection against brain cell death by binding to various PGE2 receptors. Prostaglandins are a class of compounds that act like hormones by binding to specific receptors. Their many functions include constricting and relaxing blood vessels, controlling clotting, causing pain, and both increasing and decreasing inflammation. Because neuroinflammation is thought to play a role in the development of AD, PGE2 was a logical place to look for clues to AD toxicity and brain cell death, according to co-lead researcher Sylvain Doré, Ph.D., an associate professor of anesthesiology and critical care medicine and neuroscience at The Johns Hopkins University School of Medicine. Although it was already known that PGE2 can offer some protection against neurotoxicity, Doré's study shows that this protection is linked to stimulation of receptors EP2 and EP4. This stimulation results in a cascade of events inside brain cells that produces cyclic-AMP (cAMP), a molecule that protects brain cells by reducing the toxic effects of Aâ1-42. Doré speculates that the presence of Aâ1-42 in neuritic plaque, a waxy translucent substance consisting of protein and other materials, a hallmark in the brains of AD patients, may cause cellular death by self-assembling into long protein filaments that are toxic to neurons. It's also possible, Doré said, that prostaglandin protection works by modifying the link between Aâ1-42 and the overproduction of free radicals. Free radicals are highly reactive chemicals that oxidize other molecules and at high concentrations lead to cell death. Free radicals are associated with neuronal loss observed in AD. "The development and testing of molecules that can enhance PGE2 receptor activity, and further research into how these receptors increase cAMP concentrations and improve protection could lead to successful new treatments," Doré said. In the study, published in the European Journal of Neuroscience, Doré and researchers focused on four specific PGE2 receptors, EP1-4, in cortical neuronal cells cultured from postnatal mice. To establish Aâ1-42-induced neurotoxicity, Doré and his team incubated these neurons with freshly dissolved Aâ1-42 protein for 48 hours. The analysis of the cells showed that Aâ1-42 resulted in a net increase in neuronal cell death compared to control cells that did not receive the peptide. To investigate the effect of PGE2 on Aâ1-42 toxicity, neurons were co-treated with Aâ1-42 and different concentrations of PGE2. Results showed that PGE2 significantly increased cell survival compared to cultures that received only Aâ1-42. To determine which of the four PGE2 receptors was responsible in the protection against Aâ1-42 toxicity, Doré's group conducted three separate experiments. In the first they co-treated neurons with Aâ1-42 and the EP2 agonist butaprost. An agonist is a drug that mimics the action of a natural substance and binds to that substance's receptor. Results showed that the stimulation of EP2 receptors offered significant protection against Aâ1-42 neurotoxicity. They also co-treated neurons with Aâ1-42 and the EP4/EP3 agonist, OHPGE1, and received similar results. Conversely, co-treatment of the cells with the EP3/EP1 agonist, sulprostone, and Aâ1-42 exhibited no significant protection. Doré's group concluded that the protective effects against Aâ1-42 neurotoxicity are specific to PGE2 receptors EP2 and EP4. The researchers next pursued changes in cAMP levels as a potential underlying cellular mechanism in the protective actions of EP2 and EP4 agonists. They treated neurons with PGE2, butaprost or OHPGE1 for 15 minutes and measured the cAMP concentration inside the cells. Results showed that brief exposure of neurons to PGE2 almost tripled cAMP levels, and exposure to butaprost or OHPGE1 almost doubled them. Subsequently, to address whether PGE2-mediated neuroprotection involves cAMP, Dore and his group measured neuron toxicity of Aâ1-42 in the absence or presence of cAMP. Treatment with cAMP significantly enhanced cell health after Aâ1-42 exposure indicating that stimulation of PGE2 receptors EP2 and EP4 generates a cascade of events that increases cAMP concentrations and, in turn, reduces Aâ1-42 neurotoxicity. "Due to the established link between Aâ1-42 and Alzheimer's disease, this discovery could lead to better drug therapies for treating this disease," Doré said. Additional researchers in this study include co-lead author and former Hopkins researcher Valentina Echeverria, Ph.D., and Andrew Clerman, B.S., a graduate student in the Department of Anesthesiology and Critical Care Medicine. This study was funded by grants from the National Institutes of Health.

Post a Comment

Featured Products From the ProHealth Store
Energy NADH™ 12.5mg FibroSleep™ Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid

Natural Remedies

Sleep Like a Baby in Nature's Cradle Sleep Like a Baby in Nature's Cradle
Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed
Natural Support for Mood, Sleep and Mental Focus? L-theanine Natural Support for Mood, Sleep and Mental Focus? L-theanine
Help for Soreness and Swelling: What Do Silkworms Have to Do With It? Help for Soreness and Swelling: What Do Silkworms Have to Do With It?
Prepare Yourself for Cold & Flu Season Prepare Yourself for Cold & Flu Season

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map