ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

The Significance of Selenium

Print Page
Email Article

Fat May Affect Electrical Impulses in Brain, Heart

  [ 99 votes ]   [ Discuss This Article ] • April 15, 2005

Source: Washington University School of Medicine Molecules attach to proteins that regulate bioelectricity April 14, 2005 -

- Fatty molecules may modulate the electrical characteristics of nerve and heart cells by regulating the properties of key cell pores, according to research conducted at Washington University School of Medicine in St. Louis. The findings suggest a novel mechanism in which dietary fat can attach directly to proteins that regulate bioelectricity. This can affect the performance of nerve and heart cells, with potentially broad-ranging health implications. The researchers report in the April 26 issue of the Proceedings of the National Academy of Sciences that the proteins in specific electrically responsive cell pores--voltage-sensing potassium channels--can bind to molecules of palmitate.

Palmitate is a saturated fatty acid previously linked to "hardening" of the arteries and obesity and is a common fat in unhealthy diets. "In effect, the attachment of palmitate makes these potassium channels, called Kv1.1 channels, open more easily, and this can influence the transmission of electrical impulses along nerve cells and the contraction of heart muscle cells," says senior author Richard Gross, M.D., Ph.D., professor of medicine, of chemistry and of molecular biology and pharmacology and director of the Division of Bioorganic Chemistry and Molecular Pharmacology.

Potassium channels are among the most important cell channels used for propagating electrical signals in nerve and heart muscle. Their protein units form pores that permeate the outer wall or membrane of the cell and selectively allow the passage of potassium ions, which are essential components of cell signaling systems. Like a meter that measures charge in a battery, a Kv1.1 channel senses the amount of voltage between the interior and exterior of cells and can open and close in response to voltage changes. Because they are embedded in the cell membrane, Kv1.1 channels are tightly surrounded by the fatty molecules of the membrane, which line up next to each other to create a stable structure. "We think the attached palmitate molecule causes a defect in the close, regular packing of the membrane's fatty molecules around the Kv1.1 channel, because the palmitate has a different shape," Gross says. "This shape loosens the membrane packing, changes the movement of the channel protein and alters the voltage needed for it to open or close."

The researchers identified the specific site or amino acid in the Kv1.1 protein units that palmitate most often links to. They discovered that a short sequence of amino acids on either side of the attachment site is found in several other proteins as well, arguing for an evolutionarily conserved function for this amino acid sequence. Most strikingly, five of six amino acids adjacent to the attachment site matched a site where palmitate is known to attach to CD36, an abundant protein vital for moving fatty molecules through the membrane into cells. "When we see that molecules as widespread, as important and as different from each other as CD36 and Kv1.1 are linked to palmitate at the same sequence--that's nature sending us a message," Gross says. "It's possible that this palmitate attachment site has been used throughout evolution to fulfill functions involving fatty molecules."

Future investigations will seek to further characterize the electrical properties conferred by the addition of palmitate to Kv1.1. The research team will also begin studies with mice to determine the effects of dietary fats on palmitate attachment and the electrical characteristics of cells. "We want to find out if a connection exists between dietary fats, the attachment of palmitate to proteins and health," Gross says. "In obesity or in cellular lipotoxicity, you exceed cells' capacity to handle fatty acids. Accumulation of fatty acids can lead to an increase in alterations like palmitate attachment, not only in Kv1.1, but in dozens or even hundreds of other proteins. That possibly explains some of the many types of damage that result from having too high of a fatty acid burden."

Gubitosi-Klug RA, Mancuso DJ, Gross RW. The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proceedings of the National Academy of Sciences. 2005;102(17): 5964-5968.

Funding from the National Institutes of Health supported this research. Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Optimized Curcumin Longvida® Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium

Natural Remedies

Enhance Eyelashes Naturally Enhance Eyelashes Naturally
Mitochondria-Booster NIAGEN® Shows Promise in First Human Clinical Trial Mitochondria-Booster NIAGEN® Shows Promise in First Human Clinical Trial
Quercetin: Natural Support for Allergy & Inflammation Relief and More Quercetin: Natural Support for Allergy & Inflammation Relief and More
Irritable Bowel Syndrome: Unlocking the Secrets of Peppermint, Acacia and Fennel Irritable Bowel Syndrome: Unlocking the Secrets of Peppermint, Acacia and Fennel
Breaking Through the Mental Fog Breaking Through the Mental Fog

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map