ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Tea drinkers have lower glaucoma risk

Why Is Chlorella Considered a Superfood?

Soy, cruciferous vegetables could help lower breast cancer treatment side effects

The Long-Term Benefits of Drinking Oolong Tea

Wonderful White Tea: A Drink Fit for an Emperor

Why You Should Try This Sweet-Smelling and Health-Boosting Essential Oil

Arnica: This Powerful Herb Promotes Various Kinds of Healing

Chamomile Tea: Why This Ancient Therapeutic Drink Still Stands Out Today

Get ‘Hooked’ on Cat’s Claw: The Many Benefits of This Amazonian Herb

Try Apple Cider Vinegar and Black Cumin Oil as Your Go-To Salad Dressing

 
Print Page
Email Article

Groundbreaking Research: Yale and Salk Institute Scientists Reveal the Structure of a Key Component that Makes Cells Move

  [ 18 votes ]   [ Discuss This Article ]
By xx • www.ProHealth.com • December 12, 2001





Researchers at Yale and the Salk Institute have determined the structure of a set of proteins called the Arp2/3 complex that helps cells move, paving the way for understanding how cells find bacteria and protect against infections.
"This is a dream come true to see the structure of this important protein complex in such detail," said principal investigator Thomas Pollard, professor of molecular, cellular and developmental biology at Yale.

Published in the November 23 issue of Science, the study describes the atomic structure of the Arp2/3 complex for the first time. "Knowledge of the three-dimensional structure not only provides key insights about Arp2/3 complex, but it will also elevate the level of research on cellular movements for years to come," said Pollard.

The Arp2/3 complex is one of the largest asymmetrical protein structures to be determined by x-ray crystallography at a very high resolution. The complex is made up of seven different proteins and is responsible for initiating the assembly of the protein actin into filaments at the front end of a moving cell. This growth of actin filaments is called polymerization and is believed to push the front of the cell forward, allowing it to move.

Pollard said the classic example of such movements is the locomotion of amoeba. Many human cells rely on the same mechanism. For example, protective white blood cells use actin polymerization to move to the sites of infection. Similarly, during the development of the human brain, nerve cells use actin polymerization to grow at least one million miles of long, thin cellular processes (axons and dendrites) that form the connections between nerve cells and between nerve cells and muscles.

Pollard said that in order for the cells to know in which direction to move, chemicals in the environment pass messages to the Arp2/3 complex, which interprets the messages that orient the nerves and other cells.

"Actin and Arp2/3 complex work like a peculiar motor in a car to make the cell move forward," said Pollard. "Rather than turning wheels, the filaments grow like branches of a bush to push the cell forward. Arp2/3 complex is very ancient, having evolved in primitive cells well over one billion years ago."
Pollard’s laboratory discovered the complex in 1994 and contributed to many of the observations that have made the Arp2/3 complex the center of attention in the cell movement field in recent years. Pollard’s laboratory also developed methods to make large quantities of highly purified Arp2/3 complex from the cow thymus gland. They discovered that this preparation forms crystals suitable for x-ray crystallography.

Other researchers on the study include Senyon Choe, Donald A. Kaiser, and Kirsl Turbedsky of the Salk Institute for Biological Studies; Robert C. Robinson of Uppsala University in Sweden; Jean-Baptiste Marchand of Avidis, Bipole Clermont-Limagne in France; and Henry N. Higgs of Dartmouth College.



Post a Comment

Featured Products From the ProHealth Store
Ultra EPA  - Fish Oil Energy NADH™ 12.5mg Optimized Curcumin Longvida®


Article Comments



Be the first to comment on this article!

Post a Comment


 
Optimized Curcumin Longvida with Omega-3

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Priming Your Immune System for Cold & Flu Season Priming Your Immune System for Cold & Flu Season
Astaxanthin - A Little-Known but Power-Packed Nutrient Astaxanthin - A Little-Known but Power-Packed Nutrient
Live Without Anxiety or Stress Live Without Anxiety or Stress
The Genetic Mutation That May Compromise Your Health - And What to Do About It The Genetic Mutation That May Compromise Your Health - And What to Do About It
Coconut Oil - Healthy Gifts from the 'Tree of Life' Coconut Oil - Healthy Gifts from the 'Tree of Life'

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2018 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map