ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

The Significance of Selenium

Print Page
Email Article

Damping the Flames: Inflammation Control Mechanism Determined

  [ 29 votes ]   [ Discuss This Article ]
By xx • • December 21, 2001

National Institute of Allergy and Infectious Diseases

After a decade of research, Michail Sitkovsky, Ph.D., and
his coworkers at the National Institute of Allergy and
Infectious Diseases (NIAID), may have answered one of the
most perplexing questions in immunology: how the body
limits inflammation. Their finding, that particular cell
surface molecules sense runaway inflammation and tissue
damage, appears in the Dec. 20 issue of the journal

Inflammation, tissue swelling usually accompanied by pain
and heat, is the body's generic response to a host of
insults: invasion by bacteria or viruses, injury, or
reactions to one's own tissues. Within limits, inflammation
is a valuable ally in the body's fight against invaders.
But left unchecked, inflammation exposes a decidedly
dangerous side. Chronic inflammation is characteristic of
such disorders as asthma, chronic hepatitis, lupus and
rheumatoid arthritis.

Although many drugs lessen or halt inflammation, very
little is known about the body's own mechanism for
controlling inflammation and the tissue damage that
accompanies it. "Clearly, there must be some way for the
body to shout, 'Enough already! Stop the inflammation',"
explains Dr. Sitkovsky. The shout, or signal, must be
sensed and responded to so that inflammatory activity
abates. "We wanted to learn what the signals and sensors
are in living organisms," he says.

Adenosine and its membrane-bound receptor made attractive
candidates for signal and sensor, Dr. Sitkovsky notes. A
simple molecule that leads a busy life, adenosine is the
core of the cell's energy-containing compound, ATP, and
elevated levels of it in the brain appear to cause sleep.

Despite its numerous roles throughout the body, adenosine
has received little attention from immunologists, says Dr.
Sitkovsky. "I was pursuing the idea that adenosine has some
important function in the immune system, too," he says.

This much is known: when tissue damage mounts due to
prolonged inflammation, oxygen levels in the damaged area
fall. This in turn leads to increased amounts of adenosine
outside cells. Dr. Sitkovsky theorized that the excess
adenosine binds to the adenosine receptors, which then
initiate a chain reaction that slows and eventually stops
inflammation. Attractive as they are as candidates,
adenosine and its receptor are just one of many signal-
sensor pairs on the cell's surface. Any of these might also
be the elusive inflammation-damping mechanism.

To prove the role of adenosine receptors in controlling
inflammation, Dr. Sitkovsky turned to specific genetically
engineered mice. These mice lack adenosine receptors, but
are identical to normal mice in every other way. When
exposed to various inflammatory stimuli (for example, a
drug that mimics virus-induced liver damage), the receptor-
deficient mice suffered extensive tissue damage and in some
cases died, while normal mice were either unaffected or
suffered minimal tissue damage. Further experiments
revealed that no other receptor could substitute for the
adenosine receptor. Mice lacking the critical molecular
brake could not halt either organ-specific or body-wide

"The discovery that adenosine receptors play a central
physiologic role in limiting inflammation is an important
conceptual advance," says William Paul, M.D., chief of
NIAID's Laboratory of Immunology, where Dr. Sitkovsky
conducts his research.

"It may help us find new ways to control excessive
inflammation in a wide range of clinical situations. It may
also allow us to develop new ways to enhance the
inflammatory response, when that is desirable, to make
better vaccines and anti-tumor drugs," Dr. Paul adds.

An additional, provocative finding emerged from Dr.
Sitkovsky's recent work. When exposed to a caffeine-like
substance, mice in the study had difficulty controlling
acute inflammation. It has been known for many years that
caffeine interferes with the adenosine receptor. If, in
fact, adenosine receptors are needed for effective
inflammation control, anything that hinders their function
might impair the body's ability to regulate inflammation.
Dr. Sitkovsky plans additional research to see if this
possible caffeine-inflammation connection exists in humans
as well.

NIAID is a component of the National Institutes of Health
(NIH). NIAID supports basic and applied research to
prevent, diagnose, and treat infectious and immune-mediated
illnesses, including HIV/AIDS and other sexually
transmitted diseases, tuberculosis, malaria, autoimmune
disorders, asthma and allergies.

Press releases, fact sheets and other NIAID-related
materials are available on the NIAID Web site at

REFERENCE: A Ohta and M Sitkovsky. Role of adenosine receptors in
downregulation of inflammation and protection from tissue
damage. "Nature" 414: 916-20 (2001).

Post a Comment

Featured Products From the ProHealth Store
Optimized Curcumin Longvida® FibroSleep™ Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Live Without Anxiety or Stress Live Without Anxiety or Stress
Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed Fight Inflammation and Promote Cognitive Health with High-OPC Grape Seed
Vitamin K-2 – A Key Player in Cardiovascular and Bone Health Vitamin K-2 – A Key Player in Cardiovascular and Bone Health
Sleep Like a Baby in Nature's Cradle Sleep Like a Baby in Nature's Cradle
Coenzyme Q10 - The Energy Maker Coenzyme Q10 - The Energy Maker

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map