ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Is a Good Night's Sleep at the Top of Your Wishlist?

Ashwagandha Helps Hormones - Aids Arthritis

Why You Should Be Eating More Porcini Mushrooms

A Breathalyzer for Disease?

How Bacopa Can Help Improve Your Cognitive Function

Magnesium Reduces Diabetes and Helps Keep You Young

Lavender Aromatherapy Can Ease Pre-Op Anxiety

Give Your Health a Much-Needed Boost With Geranium

The Role of Resveratrol in Achieving Optimal Health

Could Coconut Oil Help Reduce Antibiotics?

Print Page
Email Article

Zebrafish: Drug Discovery of A Different Stripe Holds Promise In COX Research

  [ 17 votes ]   [ Discuss This Article ] • June 13, 2002

(Philadelphia, PA) - Researchers at the University of Pennsylvania School of Medicine have discovered that zebrafish produce enzymes analogous to the two human cyclooxygenase (COX) enzymes - COX-1 and -2 - proteins that have a role in a variety of ailments including cardiovascular disease, some types of cancer, and arthritis. Furthermore, drugs that target the COX enzymes, nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors of COX-2, seem to act in a manner similar to humans.

"We have learned a great deal about how the COX enzymes and their inhibitors work from mouse models of COX gene inactivation," said Garret A. FitzGerald, MD, Chair of the Department of Pharmacology and director of the Center for Experimental Therapeutics at Penn. " However, these systems have their limitations. The zebrafish promises to play a complementary role in which both biology and the role of drugs can be investigated."

Traditionally zebrafish have been useful in searching for gene mutations induced by exposure to toxic chemicals, which coincide with abnormalities of development. Such an approach is termed "forward genetics."

The Penn paper, detailed in this week's print edition of the Proceedings of the National Academy of Sciences, is an early example of the use of zebrafish for "reverse genetics." A particular set of genes - in this case, the COXs - are sought out and their function is uncovered by manipulating their action in zebrafish. The COX enzymes produce prostaglandins, fatty acids that perform a number of hormone-like tasks.

Prostaglandins alter the activities of the cells near and around where they are made. They also cause inflammation and can regulate blood flow to some organs, transport across cell membranes, and transmissions between neurons.

The COX proteins are encoded by separate genes on separate chromosomes and, likewise, have two separate but interdependent functions. COX-1 is responsible for the "day-to-day" production of prostaglandins, while COX-2 is highly regulated by numerous other cellular signals when needed.

Drugs which selectively target COX-2, such as Pharmacia/Pfizer's Celebrexâ and Bextraâ and Merck's Vioxxâ have attracted much attention. They have been remarkably successful, based on claims that they relieve pain and inflammation while lessening the risk of stomach ulceration and bleeding associated with traditional NSAIDs. One issue of controversy has been whether the benefit of COX - 2 inhibitors in the stomach is offset by an increased risk of heart attack.

"The zebrafish has particular advantages for the study of drug action," says Tilo Grosser, MD, Research Associate in Pharmacology and first author of the study. "The embryos are translucent, so we can study the pattern of gene expression during development, as well as in the adult. The near completion of the zebrafish genome project allows us to hunt for relatives of human genes of interest. Then we can manipulate them and see how they function."

Indeed, this is just the approach that Grosser, FitzGerald and their colleagues took in the present study. They thought the zebrafish might be a particularly useful model of the cardiovascular effects of COX inhibitors. First, they identified the zebrafish versions of the COX genes and showed that they behaved like the human enzymes. Next they studied their distribution. Interestingly, both COX- 1 and COX-2 were extensively expressed in the blood vessels of zebrafish, but with different patterns of distribution.

In humans, prostaglandin products of COX-1 causes blood vessels to constrict and platelets to become sticky - the first step in a heart attack or stroke. COX-2 products, by contrast, are formed in blood vessels where they dilate blood vessels and prevent the activation of platelets. NSAIDs and aspirin block both forms of the enzyme. COX-2 inhibitors leave the hazardous COX-1 products unaltered, thereby perhaps predisposing some individuals to a risk of heart attack.

"We were impressed that COX inhibitors behaved much the same in zebrafish as in humans," said Grosser. An NSAID blocked the stickiness of zebrafish thrombocytes -zebrafish platelets - and prolonged the bleeding time, while a COX-2 inhibitor failed to exhibit these cardioprotective properties.

The researchers also illustrated the value of this model system by "knocking down" the COX genes. This revealed a new role for COX-1 during development, one that may have been masked in mice and humans by maternal formation of prostaglandins.

The high fecundity of zebrafish makes them a particularly attractive species for high thruput screening in the selection of new drugs. "Rapid acquisition of 'proof of principle ' is a particular challenge for the pharmaceutical industry, " said FitzGerald. "It is our hope that the zebrafish will facilitate this effort considerably."

This work was supported by the Alexander von Humboldt Foundation and the National Institutes of Health.

Post a Comment

Featured Products From the ProHealth Store
Energy NADH™ 12.5mg Ultra ATP+, Double Strength FibroSleep™

Article Comments

Be the first to comment on this article!

Post a Comment

Optimized Curcumin Longvida with Omega-3

Featured Products

Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Natural Support for Mood, Sleep and Mental Focus? L-theanine Natural Support for Mood, Sleep and Mental Focus? L-theanine
Cocoa's Polyphenol Riches - All the Health Benefits without the Sugar, Calories or Guilt Cocoa's Polyphenol Riches - All the Health Benefits without the Sugar, Calories or Guilt
Olea25 Olive Hydroxytyrosol Hits Astonishing 68,000+ ORAC Antioxidant Value Olea25 Olive Hydroxytyrosol Hits Astonishing 68,000+ ORAC Antioxidant Value
The Big Blue Fish that Helps Chase the Blues Away The Big Blue Fish that Helps Chase the Blues Away
How Glutathione Can Save Your Life How Glutathione Can Save Your Life

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map