ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Vitamin D supplementation extends life in mouse model of Huntington's disease

Omega-3 fatty acid stops known trigger of lupus

Conquer Your Email Inbox, Increase Productivity and Reduce Stress

Print Page
Email Article

Plaque, the hallmark of Alzheimer's disease is revealed in three dimensions

  [ 39 votes ]   [ Discuss This Article ]
By Press Release by the Duke Univ.Medical Center • • November 22, 1999

DURHAM, N.C. -- For the first time, researchers have been able to produce three-dimensional images of plaque, the blobs of "garbage" that clog the brains of Alzheimer's disease patients. Previously, plaque could only be viewed after brain tissue was diced and sliced and put under a microscope.

This milestone, made possible by marrying high-resolution magnetic resonance microscopy (MRM) with powerful computers, is the first step toward non-invasive detection of plaques in Alzheimer's disease. The researchers, from Duke University Medical Center, hope ongoing studies in human and animal brain tissue will ultimately answer the central enigma in Alzheimer's disease: Which comes first -- changes in behavior or the build-up of plaque?

The scientists also say that, using the technique, it might be possible to watch the development of plaque as it occurs in transgenic mice altered to produce the substance in their brains. In this way, the effect of experimental drugs designed to treat Alzheimer's disease can be tested as the disease progresses.

"If you can visualize the plaque in vivo to see how its development relates to cognitive behavior, you can answer the question of cause and effect," said Dr. Helene Benveniste, a Duke anesthesiologist and department of radiology brain researcher. She is the lead author on the study, published in the Nov. 23 issue of the Proceedings of the National Academy of Sciences. She said in an interview that researchers who study Alzheimer's disease are divided over the question of whether the disorder results from the development of plaques or whether those deposits are just "gravestones" for damage that has occurred due to a different factor. Plaques are made up of amyloid, a fibrous network of protein not usually found in the body, as well as lots of neuronal debris.

Working with Benveniste on the study were Duke investigators G. Allan Johnson, director of the Center for In Vivo Microscopy, Gillian Einstein, Katie Kim, and Dr. Christine Hullette. The study was funded by the Paul Beeson Foundation, the Alzheimer's Association and by the National Institutes of Health, which supports Duke's Center for In Vivo Microscopy where the work was done.

MRM technology was designed by Duke researchers in order to create highly detailed images of tiny structures and specimens. The technique is a refined version of magnetic resonance imaging (MRI) used in hospitals, but is much more powerful, using higher magnetic fields to create superb resolution. To make their three-dimensional images of plaque, the researcher removed tiny "plugs" of brain tissue from patients who had agreed to a rapid autopsy when they died; that is, an autopsy performed with hours of death so that brain chemistry is still fresh.

To image plaque inside the centimeter-wide brain samples, a specially engineered magnetic coil was developed by Johnson so that it could come as close to the tissue as possible. After a number of experimental tries, the team found the right combination of settings for spatial resolution that could image the plagues embedded inside the brain tissue without distortion. They then took hundreds of individual images while rotating the sample, so that when a computer blended all the images together, a high-resolution three-dimensional portrait of brain plaques was created.

"When reconstituted in a 3D image, plagues looks like small round balls, basically spots of garbage, floating in space," Benveniste said.
The researchers do not plan to use the technique to confirm a diagnosis of Alzheimer's disease in patients -- currently, the only way to make sure a person has died from the disorder is to examine brain tissue that has been laboriously sliced and stained. "Current clinical magnetic resonance technology does not have the resolution to allow visualization of plaques inside the brain of a living human," Benveniste said. "This kind of detailed imaging is only possible in small animals."

Rather, they are viewing the advance as a research tool. With the use of transgenic mice, they have moved closer to the goal of understanding the pathology of the disease. These mice contain a human gene known to produce excess amounts of plaque material in the brain and it offers a good animal model of how plaque may affect brain functioning, Benveniste said. To create images of living brains, the mice are briefly anesthetized so they don't move within the MRM machine and distort the image. In their ongoing benchmark study, the researchers are creating a library of images to chart growth and development of the mice brains. This effort helps them determine the best way to track changes in plaque growth as the mice age. They will then be able to correlate changes in cognitive behavior with plaque growth in future experiments.

In what Benveniste describes as the "next generation of molecular biology," the researchers might be able to track, in living animal brains, the success of experimental drugs aimed at stopping the growth of plaques. "The dream of every brain researcher is to be able to follow, over time, both development of brain disease and the effects of drugs designed to combat them," she said. "If it works for this disease, it could work for other disorders and therapies. Time will tell."

Source: Duke University Medical Center Press Release: November 22,1999

Renee Twombly

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Ultra EPA  - Fish Oil Optimized Curcumin Longvida®

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health

Natural Remedies

Quercetin: Natural Support for Allergy & Inflammation Relief and More Quercetin: Natural Support for Allergy & Inflammation Relief and More
Live Without Anxiety or Stress Live Without Anxiety or Stress
Magnesium + Malic Acid: One-Two Punch for Pain & Fatigue Magnesium + Malic Acid: One-Two Punch for Pain & Fatigue
Reversing Neurodegeneration with a New Magnesium Compound Reversing Neurodegeneration with a New Magnesium Compound
Aches and Pains? A Simple Solution You'll Love Aches and Pains? A Simple Solution You'll Love

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map