Activate Now
ProHealth me-cfs Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Alcohol intolerance in CFS - gives us a clue as to the mechanisms of fatigue

Simplifying Nutritional Support in CFS & Fibromyalgia

Need Help with Pain Management? There's an App for That

How Walking to Bathroom Can Be Harder Than Running a Marathon: A Doctor’s ME/CFS Case Study

Ask the Doctor: Is CFS an onset to fibromyalgia? What is the difference?

How Multiple Chronic Illnesses Shaped One Woman Into a Patient Advocate

Fighting Fatigue with Ground-breaking French Oak Wood Extract

Is Your Body Your Friend and Healing Ally?

Breathing Techniques for a Better Night’s Sleep

On the Path: Dan Moricoli's Remarkable Chronic Fatigue Syndrome Recovery Story

Print Page
Email Article

A metagenomic approach to investigate the microbial causes of myalgic encephalomyelitis/chronic fatigue syndrome: moving beyond XMRV

  [ 6 votes ]   [ Discuss This Article ]
By Ruth R. Miller et al. • • October 20, 2013

A metagenomic approach to investigate the microbial causes of myalgic encephalomyelitis/chronic fatigue syndrome: moving beyond XMRV. Image credit: by chrisroll
Image credit: by chrisroll

By Ruth R. Miller et al.


Three years ago, a novel association between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the murine retrovirus XMRV was published.[1] Since then, 191 papers have been published on the subject (NCBI PubMed, accessed 6 November 2012), largely disproving the initial association, a trend confirmed by a recent multicentre blinded trial which definitively concluded that there is no association between ME/CFS and XMRV.[2] It is therefore time to revisit the investigation of ME/CFS aetiology. Metagenomics offers a promising new opportunity for hypothesis discovery in microbial associations with ME/CFS, and we describe herein the technical basis of this approach and its advantages in aetiological agent investigation.

Metagenomics: a brief primer

Metagenomics is the analysis of all nucleic acid recovered directly from a clinical or environmental sample. Using next-generation sequencing platforms, researchers can sequence the DNA of an entire sample, generating multiple short sequences known as “reads.” Computational techniques can then be used to identify the microbes present in the sample (the “microbiome”) and their relative abundance. Improvements in sequencing platforms have brought the cost of a typical metagenomics sample to under $200, resulting in an increasing number of metagenomics-based analyses in the literature. A complete microbial census of various body sites was performed on 250 human volunteers as part of the Human Microbiome Project,[3] while subsequent “metagenome-wide association studies” (MGWAS) have compared the microbiomes of healthy individuals to those with various conditions. Amongst other findings, these data have identified associations between inflammatory bowel disease and enterobacteriaceae,[4] colorectal carcinoma and fusobacterium,[5] and type two diabetes and butyrate-producing bacteria.[6]

Metagenomics for ME/CFS

Metagenomics offers an unbiased opportunity to investigate potential novel associations between microbes and ME/CFS. Unlike previous studies, which have examined the host immune response, response to antimicrobial treatment regimens, or used PCR-based screening, a metagenomics protocol replaces the reductionist search for a specific agent with a more holistic discovery-oriented strategy capable of revealing associations with new candidate aetiological agents, including novel pathogens. Metagenomics also offers several other advantages relative to other experimental approaches, summarised in Table 1. These include technical advantages, such as the elimination of a culture step and the ability to detect low-abundance microorganisms. More general opportunities include the ability to investigate the role of microbial communities and/or functional networks in ME/CFS as opposed to an individual species.

The metagenomics approach is also unique in that even a negative result is of use. Presuming a study is performed with sufficient power and scientific rigour, metagenomics has the potential to detect any microbe in a sample; therefore the lack of observed associations between ME/CFS and microbial entities would provide strong, albeit not conclusive, evidence that the origins of ME/CFS lie in non-infectious causes. However, it must be noted that metagenomics is not able to prove that a disease was instigated by a microbe if it has since been removed from the body site of investigation. Nevertheless, even if the causal microbe is no longer present, it may have changed the composition of the microbiome, by altering the presence or relative abundance of other microbes. Such changes could be detected by metagenomics and be used to diagnose and, in principle, treat the symptoms of ME/CFS, even if not the initial cause.

Read the rest of this Open Access article HERE.

Citation: Ruth R. Miller , Jennifer L. Gardy , Patrick Tang & David M. Patrick , Fatigue: Biomedicine, Health & Behavior (2013): A metagenomic approach to investigate the microbial causes of myalgic encephalomyelitis/chronic fatigue syndrome: moving beyond XMRV, Fatigue: Biomedicine, Health & Behavior DOI:10.1080/21641846.2013.812831

Please Discuss This Article:   Post a Comment 

[ Be the first to comment on this article ]

Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Subscribe Now!
Receive up-to-date ME/CFS, Fibromyalgia & Lyme Disease treatment and research news
 Privacy Guaranteed  |  View Archives

Vitamins and Supplements for ME/CFS Support

Featured Products

Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
MitoQ® MitoQ®
Powerful Antioxidant Support to Mitochondria
Hydroxocobalamin Extreme™ Hydroxocobalamin Extreme™
The B-12 your brain needs for detox & sharpness

Natural Remedies

Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients
Itching to Find Dry Skin Relief? Itching to Find Dry Skin Relief?
D-ficient? Health Risks You Need to Know About D-ficient? Health Risks You Need to Know About
The Curcumin Revolution: 'Golden' Ticket to Better Health The Curcumin Revolution: 'Golden' Ticket to Better Health
How Glutathione Can Save Your Life How Glutathione Can Save Your Life

What is Fibromyalgia?
Fibromyalgia Diagnosis
Fibromyalgia Symptoms
Fibromyalgia Causes
Fibromyalgia Treatments
Fibromyalgia Diet
Fibromyalgia Medications
M.E. & CFS
What is M.E./CFS?
M.E./CFS Diagnosis
M.E./CFS Symptoms
M.E./CFS Causes
M.E./CFS Treatments
M.E./CFS Diet
M.E./CFS Medications
What is Lyme Disease?
Lyme Disease Diagnosis
Lyme Disease Symptoms
Lyme Disease Causes
Lyme Disease Treatments
Lyme Disease Diet
Lyme Disease Medications
M.E. & CFS
Lyme Disease
General Health
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing