ProHealth me-cfs Vitamin and Natural Supplement Store and Health
Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help

|
|
 
Print Page
Email Article

Georgetown University to Study Post-Exertional Malaise

  [ 17 votes ]   [ Post a Comment ]
www.ProHealth.com • December 15, 2013

previous article next article

Georgetown University to Study Post-Exertional Malaise. Dr. James Baraniuk
Dr. James Baraniuk

Editor's Comment: James Baraniuk made headlines last March when he discovered the first physical evidence of Gulf War Illness. (Read about it HERE.) He found that in Gulf War vets the nerve fibers that connect brain areas involved in the processing and perception of pain and fatigue were not working properly. Further research revealed atrophy in the brain stems of some vets, causing irregular heartbeat. Another group showed atrophy in the regions of the brain controlling pain perception. (Read more HERE.)

Dr. Baraniuk believes that patients with ME/CFS have similar brain anomalies, and that these can be demonstrated using functional MRIs (fMRI), a brain scanning technique that measures brain activity by detecting changes in blood flow. In this study, he plans to use fMRIs to measure brain changes in ME/CFS patients after exercise, thereby pinpointing the precise areas of the brain that produce post-exertional malaise (PEM) and providing an objective means of identifying subgroups.

Dr. Baraniuk's project was awarded $335,300 by the NIH. The study began in September 2013, and will end in July 2018.

Abstract

Fatigue, widespread pain and tenderness are common findings in Chronic Fatigue Syndrome (CFS) and allied disorders such as Gulf War Illness (GWI) and Fibromyalgia (FM). In addition, they share sleep alterations, diverse nociceptive complaints, migraine, and systemic hyperalgesia. This overlap suggests that these syndromes share specific mechanisms of neural pathophysiology.

Central sensitization is a logical explanation for their pain complaints but has been difficult to explain at the neuronal level. One of the cardinal clinical features of FM, GWI and CFS is "exertional exhaustion". Exercise, cognitive or other stressors induce a relapse of symptoms that may be immediate or can be delayed up to 24 hours. Although studies have found changes associated with exercise in CFS, the causal relationship between the brain and the aberrant response to exercise are unknown. Furthermore, changes that predict the transition to exertional exhaustion have not yet been identified.

We developed a novel exercise stress test, fMRI, neurocognitive testing strategy to study this phenomenon in GWI subjects who met 1994 CFS criteria. We believe the outcomes can be generalized to CFS, and form the basis for a new understanding of this disease.

Hypothesis: Exercise induces cognitive, somatosensory and autonomic dysfunction that are common features of CFS, GWI, & FM. Axonal alterations may be responsible for the neuropathology

  • (SPECIFIC AIM 1). The exercise stressor disrupts vulnerable compensatory neural mechanisms to reveal two autonomic and cognitive phenotypes via fMRI

  • (SPECIFIC AIM 2). Axonal dysfunction in FM can be identified from functional connectivity studies linked to specific dysregulated neurotransmitters of the brain

  • (SPECIFIC AIM 3). Corollary: CFS neuropathology can be modeled based on exercise-induced outcomes of GWI subjects.

Our integrated exercise & fMRI protocol identified the novel finding of significantly increased axial diffusivity (AD) in specific white matter tracts by diffusion tensor imaging (DTI) that was predictive of GWI status compared to controls. GWI groups also met CFS criteria.

Next, we found that exercise perturbs neurophysiological brain networks that led to 2 GWI phenotypes that were associated with exercise induced changes in autonomic control, white matter integrity, cortical and brainstem atrophy, and brain blood flow dynamics. Baseline studies showed limited cross-sectional "static" differences, but the exercise stressor revealed causal and significant "dynamic" alterations of neural processes.

We propose that CFS subjects will display a comparable dichotomy of objective findings. Identification of CFS subgroups would begin the process of defining objective neuropathological mechanisms in CFS. These objective outcomes may define specific CFS phenotypes and help explain the heterogeneous presentation of this illness. Conversely, identification of other coherent patterns may provide new objectively defined criteria for CFS. These mechanisms can lead to objective diagnostic tests and identification of new targets for treatment.

Public Health Relevance Statement

An exercise challenge - fMRI study in subjects who met criteria for both Chronic Fatigue Syndrome and Gulf War Illness revealed:

  • (A) significant differences in white matter integrity in specific brain tracts that distinguished CFS/GWI from control subjects, and

  • (B) two potential illness phenotypes based on significant differences in autonomic, neurocognitive, brain blood flow, and other purely objective outcomes.

These exercise-induced alterations reveal mechanisms of CFS neuropathology, and provide opportunities for a new diagnostic test and insights into targets for development of drugs and other treatments.

Source: NIH Project Reporter, Project Number:1R01NS085131-01



previous article
  Rating 4.6 (17 votes) next article




DISCUSS THIS ARTICLE   (0 existing comments) Post a Comment 




[ Be the first to comment on this article ]




 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS & Fibromyalgia treatment and research news
 Privacy Guaranteed  |  View Archives

Save on Your Next Order

Featured Products
FibroSleep™ by ProHealth FibroSleep™ by ProHealth
The All-in-One Natural Sleep Aid
Fatigued to Fantastic!™ Energy Revitalization System - Berry Splash Fatigued to Fantastic!™ Energy Revitalization System - Berry Splash
Vitality, Health and Lasting Energy
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ubiquinol CoQ-10 Ubiquinol CoQ-10
Reduced, Active Form of CoQ10
B-12 Extreme™ B-12 Extreme™
The Most Potent Vitamin B-12 on Earth

Most Viewed Articles
What's the Hidden Cause Behind YOUR Fibromyalgia Flares? [more]

Pridgen Reports Fibromyalgia Antiviral Trial Results “Very Positive”: Predicts New Approach Will Be ... [more]

VIDEO: IACFS/ME Conference - Summary of Research by Dr. Komaroff [more]

How to Limit or Minimize Your Fibromyalgia Flare [more]

Mitochondrial Dysfunction, Post-Exertional Malaise and CFS/ME [more]

The Devil Is In The Details – A Herpes Simplex Virus Inquiry For Fibromyalgia and Chronic Fatigue Sy... [more]

Sympathetic Nervous System Dysfunction in FIbromyalgia and Overlapping Conditions [more]

Review of Nutritional Supplements Used for ME/CFS and FM [more]

FREE: Stop Feeding Yourself PAIN Guide [more]

Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel sy... [more]


FIBROMYALGIA RESOURCES
What is Fibromyalgia?
Fibromyalgia 101
Fibromyalgia Symptoms
Fibromyalgia Treatments
| CFS RESOURCES
What is CFS?
ME/CFS 101
ME/CFS Symptoms
ME/CFS Treatments
| FORUMS
Fibromyalgia
ME/CFS
ADVANCED MEDICAL LABS
WHOLESALE  |  AFFILIATES
GUARANTEE
CONTACT US
PRIVACY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing