10% Off $75 Orders! Use Code SAVE10P Shop Now
One use per customer. Not available with Autoship. Expires 5/28/18.

A Computer Model Predicts Outcome of Multidisciplinary Pain Program for Fibromyalgia Patients

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Editor's comment: Artificial neural networks are computer models inspired by actual biological central nervous systems (the brain in particular) that are capable of machine learning and pattern recognition.  In an artificial neural network, simple artificial nodes, called “neurons,” are connected together to form a network which mimics a biological neural network.

An Artificial Neural Network Approach for Predicting Functional Outcome in Fibromyalgia Syndrome after Multidisciplinary Pain Program.

By M. Salgueiro,et al.

Abstract:

OBJECTIVE: The objective of this study was to evaluate the ability of artificial neural networks (ANNs) to predict, on the basis of clinical variables, the response of persons with fibromyalgia syndrome (FMS) to a standard, 4-week interdisciplinary pain program.

DESIGN: The design of this study is retrospective longitudinal.

SETTING: Fibromyalgia outpatient clinic in a tertiary-care general hospital.

SUBJECTS: The subjects of this study include outpatients with FMS.

INTERVENTION: Multidisciplinary pain program including pain pharmacotherapy, cognitive-behavioral therapy, physical therapy, and occupational therapy.

OUTCOME MEASURES: Reliable change (RC) of scores on the Stanford Health Assessment Questionnaire (HAQ), and accuracy of ANNs in predicting RC at discharge or at 6-month follow-up as compared to Logistic Regression.

RESULTS: ANN-based models using the sensory-discriminative and affective-motivational subscales of the McGill Pain Questionnaire, the HAQ disability index, and the anxiety subscale of Hospital Anxiety and Depression Scale at baseline as input variables correctly classified 81.81% of responders at discharge and 83.33% of responders at 6-month follow-up, as well as 100% of nonresponders at either evaluation time-point.

Logistic regression analysis, which was used for comparison, could predict treatment outcome with accuracies of 86.11% and 61.11% at discharge and follow-up, respectively, based on baseline scores on the HAQ and the mental summary component of the Medical Outcomes Study-Short Form 36.

CONCLUSIONS: Properly trained ANNs can be a useful tool for optimal treatment selection at an early stage after diagnosis, thus contributing to minimize the lag until symptom amelioration and improving tertiary prevention in patients with FMS.

Source: Pain Medicine, August 5, 2013. By M. Salgueiro, X. Basogain, A. Collado, X. Torres, J. Bilbao, F. Doñate, L. Aguilera and J.J. Azkue. Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...



Leave a Reply