Genome-Epigenome Interactions Associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

By Santiago Herrera et al.
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an example of a complex disease of unknown etiology. Multiple studies point to disruptions in immune functioning in ME/CFS patients as well as with specific genetic polymorphisms and alterations of the DNA methylome in lymphocytes. However, the association between DNA methylation and genetic background in relation to the ME/CFS is currently unknown.

In this study we explored this association by characterizing the genomic (~4.3 million SNPs) and epigenomic (~480 thousand CpG loci) variability between populations of ME/CFS patients and healthy controls. We found significant associations of methylation states in T-lymphocytes at several CpG loci and regions with ME/CFS phenotype. These methylation anomalies are in close proximity to genes involved with immune function and cellular metabolism.

Finally, we found significant correlations of genotypes with methylation phenotypes associated with ME/CFS. The findings from this study highlight the role of epigenetic and genetic interactions in complex diseases, and suggest several genetic and epigenetic elements potentially involved in the mechanisms of disease in ME/CFS.

Source: Santiago Herrera, Wilfred C. de Vega, David Ashbrook, Suzanne D. Vernon, Patrick O. McGowan. Genome-Epigenome Interactions Associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. bioRxiv preprint first posted online Dec. 22, 2017; doi: (Full article)

1 Star2 Stars3 Stars4 Stars5 Stars (5 votes, average: 4.80 out of 5)

Leave a Reply