Activate Now
 
ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

High dose vitamin D3 supplementation lowers inflammatory T cells in multiple sclerosis patients

Chocolate's Potential Health Benefits – and its Effect on Chronic Fatigue Syndrome Patients

Repair Damaged Mitochondria and Reduce Fatigue Up to 45%

Essential Oils - How and Where to Use Them

The Link Between Vitamin C And Optimal Immunity

SURVEY: What Is Your Diagnosis?

Liposomes Deliver Optimal Nutrient Absorption

Why Does Your Nose Run When It's Cold Outside?

What's So Great About Grape Seed?

How Your Mitochondria Influence Your Health

 
Print Page
Email Article

‘Stress Hormone Key to Alcohol Dependence’ and Certain Compounds Can Quell the Urge, Scripps Animal Studies Confirm

  [ 39 votes ]   [ Discuss This Article ]
www.ProHealth.com • January 28, 2010


In animal studies, the three compounds tested blocked this stress hormone in the amygdala, thus also blocking the increased drinking associated with alcohol addiction.

A team of scientists from The Scripps Research Institute has found that a specific stress hormone, the corticotropin-releasing factor (CRF), is key to the development and maintenance of alcohol dependence in animal models. Chemically blocking the stress factor also blocked the signs and symptoms of addiction, suggesting a potentially promising area for future drug development.

The article - the culmination of more than six years of research – was published online Jan 11 in the journal Biological Psychiatry.

"I'm excited about this study," said Associate Professor Marisa Roberto, who led the research. "It represents an important step in understanding how the brain changes when it moves from a normal to an alcohol-dependent state."

The new study not only confirms the central role of CRF in alcohol addiction using a variety of different methods, but also shows that in rats the hormone can be blocked on a long-term basis to alleviate the symptoms of alcohol dependence.

Previous research had implicated CRF in alcohol dependence, but had shown the effectiveness of blocking CRF only in acute single doses of an antagonist (a substance that interferes with the physiological action of another).

• The current study used three different types of CRF antagonists, all of which showed an anti-alcohol effect via the CRF system.

• In addition, the chronic administration of the antagonist for 23 days blocked the increased drinking associated with alcohol dependence.

Out of Control

Alcoholism, a chronic disease characterized by compulsive use of alcohol and loss of control over alcohol intake, is devastating both to individuals and their families and to society in general. About a third of the approximately 40,000 traffic fatalities every year involve drunk drivers, and direct and indirect public health costs are estimated to be in the hundreds of $ billions yearly.
"Research to understand alcoholism is important for society," said Roberto, a 2010 recipient of the prestigious Presidential Early Career Award for Scientists and Engineers. "Our study explored what we call in the field ‘the dark side' of alcohol addiction. That's the compulsion to drink, not because it is pleasurable - which has been the focus of much previous research - but because it relieves the anxiety generated by abstinence and the stressful effects of withdrawal."

CRF is a natural substance involved in the body's stress response. Originally found only in the area of the brain known as the hypothalamus, it has now been localized in other brain regions, including:

• The pituitary, where it stimulates the secretion of corticotropin and other biologically active substances,

• And the amygdala, an area that has been implicated in the elevated anxiety, withdrawal, and excessive drinking associated with alcohol dependence.

To confirm the role of CRF in the central amygdala for alcohol dependence, the research team used a multidisciplinary approach that included electrophysiological methods not previously applied to this problem.

The results from these cellular studies showed that CRF increased the strength of inhibitory synapses (junctions between two nerve cells) in neurons in a manner similar to alcohol. This change occurred through the increased release of the neurotransmitter GABA, which plays an important role in regulating neuronal excitability.

Blocking the Stress Response


Next, the team explored if the effects of CRF could be blocked through the administration of CRF antagonists. To do this, the scientists tested three different CRF1 antagonists (called antalarmin, NIH-3, and R121919) against alcohol in brain slices and injected R121919 for 23-days into the brains of rats that were exposed to conditions that would normally produce a dependence on alcohol.

Remarkably, the behavior of the "alcohol-dependent" rats receiving one of the CRF antagonists (R121919) mimicked their non-addicted ("naive") counterparts. Instead of seeking out large amounts of alcohol like untreated alcohol-dependent rats, both the treated rats and their non-addicted brethren self-administered alcohol in only moderate amounts.

"This critical observation suggests that increased activation of CRF systems mediates the excessive drinking associated with development of dependence," said Roberto. "In other words, blocking CRF with prolonged CRF1 antagonist administration may prevent excessive alcohol consumption under a variety of behavioral and physiological conditions."

Importantly, in the study the rats did not exhibit tolerance to the suppressive effects of R121919 on alcohol drinking.

In fact, they may have become even more sensitive to its effects over time - a good sign for the efficacy of this type of compound as it might be used repeatedly in a clinical setting.

The scientists' cellular studies also supported the promising effects of CRF1 antagonists. All of the CRF antagonists decreased basal GABAergic responses and abolished alcohol effects. Alcohol-dependent rats exhibited heightened sensitivity to CRF and the CRF1 antagonists on GABA release in the central amygdala region of the brain. CRF1 antagonist administration into the central amygdala reversed dependence-related elevations in extracellular GABA and blocked alcohol-induced increases in extracellular GABA in both dependent and naive rats. The levels of CRF and CRF1 mRNA in the central amygdala of dependent rats were also elevated.

Roberto notes that another intriguing aspect of the work is that it provides a possible physiological link between stress-related behaviors, emotional disorders (i.e., stress disorders, anxiety, depression), and the development of alcohol dependence.

This research was supported by the National Institutes of Health's National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA), as well as the Pearson Center for Alcoholism and Addiction Research and the Harold L. Dorris Neurological Research Institute, both at Scripps Research.

Source: Scripps Research Institute press release, Jan 25, 2010




Post a Comment

Featured Products From the ProHealth Store
Ultra EPA  - Fish Oil Optimized Curcumin Longvida® Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products


Article Comments



Be the first to comment on this article!

Post a Comment


 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS, Fibromyalgia & Lyme Disease treatment and research news
 Privacy Guaranteed  |  View Archives

How Glutathione Can Save Your Life

Featured Products

Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%

Natural Remedies

Magnesium + Malic Acid: One-Two Punch for Pain & Fatigue Magnesium + Malic Acid: One-Two Punch for Pain & Fatigue
Repair Damaged Mitochondria and Reduce Fatigue Up to 45% Repair Damaged Mitochondria and Reduce Fatigue Up to 45%
Olea25 Olive Hydroxytyrosol Hits Astonishing 68,000+ ORAC Antioxidant Value Olea25 Olive Hydroxytyrosol Hits Astonishing 68,000+ ORAC Antioxidant Value
The Big Blue Fish that Helps Chase the Blues Away The Big Blue Fish that Helps Chase the Blues Away
IBS, Crohn’s Disease, Colitis, and Other Digestive Disorders IBS, Crohn’s Disease, Colitis, and Other Digestive Disorders

FIBROMYALGIA
What is Fibromyalgia?
Fibromyalgia Diagnosis
Fibromyalgia Symptoms
Fibromyalgia Causes
Fibromyalgia Treatments
Fibromyalgia Diet
Fibromyalgia Medications
M.E. & CFS
What is M.E./CFS?
M.E./CFS Diagnosis
M.E./CFS Symptoms
M.E./CFS Causes
M.E./CFS Treatments
M.E./CFS Diet
M.E./CFS Medications
LYME DISEASE
What is Lyme Disease?
Lyme Disease Diagnosis
Lyme Disease Symptoms
Lyme Disease Causes
Lyme Disease Treatments
Lyme Disease Diet
Lyme Disease Medications
FORUMS
Fibromyalgia
M.E. & CFS
Lyme Disease
General Health
WHOLESALE
AFFILIATES GUARANTEE
PRIVACY
CONTACT US
LIBRARY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing