Activate Now
 
ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

High dose vitamin D3 supplementation lowers inflammatory T cells in multiple sclerosis patients

Chocolate's Potential Health Benefits – and its Effect on Chronic Fatigue Syndrome Patients

Repair Damaged Mitochondria and Reduce Fatigue Up to 45%

Essential Oils - How and Where to Use Them

The Link Between Vitamin C And Optimal Immunity

SURVEY: What Is Your Diagnosis?

Liposomes Deliver Optimal Nutrient Absorption

Why Does Your Nose Run When It's Cold Outside?

What's So Great About Grape Seed?

How Your Mitochondria Influence Your Health

 
Print Page
Email Article

Possible Genetic Dysregulation in Pediatric CFS – Source: Psychology, Oct 2010

  [ 7 votes ]   [ Discuss This Article ]
By Leonard A Jason, Judy Mikovits, et al. • www.ProHealth.com • December 9, 2010


[Note: to read the PDF of this article free, go HERE and click on Full Text. According to Wikipedia, the glucocorticoid receptor is the receptor that cortisol and other glucocorticoids bind to. It "is expressed in almost every cell of the body and regulates genes controlling development, metabolism, and immune response."]

Hypocortisolism is a frequent finding in individuals with chronic fatigue syndrome (CFS) and could play an explanatory role in the development of illness symptomatology.

The etiologic mechanism behind this finding could be genetic variance in glucocorticoid receptor expression (GR) or increased resistance to the effects of glucocorticoids.

Several investigators believe that allelic variance in a GR (NR3C1) mediates the expression of chronic fatigue possibly through influence on hypothalamic-pituitary-adrenal (HPA) axis function [1].

In addition, several immunologic variables are associated with CFS. The nuclear factor kappa beta (NFkB) pathway is heavily involved in cellular transcription and regulation and has been shown to be associated with the development of CFS.

The NFkB pathway is directly regulated by and influences the presence of GR [2].

Our study focused on assessing whether such inflammatory transcription is occurring during adolescent years.

Findings indicated decreased expression of NFKB1, NFKB2, and NR3C1.

A decrease in the expression of these genes may have effects on immune cell function and cytokine production that could explain immunologic findings seen in individuals with CFS.

Source: Psychology, online Oct 2010;1(4) PP.247-251. Jason LA, Sorenson M, Porter N, Brown M, Lerch A, Van der Eb C, Mikovits J. DePaul University, Chicago; The Whittemore Peterson Institute for Neuroimmune Disease, Reno, Nevada. [Email: Ljason@depaul.edu] Funded by the national Institute of Allergy and Infectious Diseases (grant number AI055735).

References:

[1] M. S. Rajeevan, A. K. Smith, I. Dimulescu, E. R. Unger, S. D. Vernon, C. Heim and W. C. Reeves, “Glucocorticoid Receptor Polymorphisms and Haplotypes Associated with Chronic Fatigue Syndrome,” Genes, Brain, & Behavior, Vol. 6, No. 2, 2007, pp. 167-176.

[2] A. Amsterdam, K. Tajima and R. Sasson, “Cell-Specific Regulation of Apoptosis by Glucocorticoids: Implication to their Anti-Inflammatory Action,” Biochemical Pharmacology, Vol. 64, No. 5-6, 2002, pp. 843-850.

[3] S. K. Johnson and J. DeLuca, “Chronic Fatigue Syndrome and the Brain,” In: J. DeLuca, Ed., Fatigue as a Window to the Brain, MIT Press, Cambridge, 2005, pp. 137-156.

[4] A. J. Cleare, “The Neuroendocrinology of Chronic Fati- gue Syndrome,” Endocrine Reviews, Vol. 24, No. 2, 2003, pp. 236-252.

[5] J. Gaab, D. Huster, R. Peisen, V. Engert, V. Heitz, T. Schad, T. H. Schurmeyer, and U. Ehlert, “Hypothalamic-Pituitary-Adrenal Axis Reactivity in Chronic Fatigue Syndrome and Health under Psychological, Physiological, and Pharmacological Stimulation,” Psychosomatic Medicine, Vol. 64, No. 6, 2001, pp. 951-962.

[6] W. K. Jerjes, A. J. Cleare, S. Wessel, P. J. Wood, and N. F. Taylor, “Diurnal Patterns of Salivary Cortisol and Cortisone Output in Chronic Fatigue Syndrome,” Journal of Affective Disorders, Vol. 87, No. 2-3, 2005, pp. 299- 304.

[7] T. G. Dinan, T. Majeed, E. Lavelle, L. V. Scott, C. Berti, and P. Behan, “Blunted Serotonin-Mediated Activation of the Hypothalamic-Pituitary-Adrenal Axis in Chronic Fatigue Syndrome,” Psychoneuroendocrinology, Vol. 22, No. 4, 1997, pp. 261-267.

[8] A. Kavelaar, W. Kuis, L. Knook, G. Sinnema and C. J. Heijnen, “Disturbed Neuroendocrine-Immune Interactions in Chronic Fatigue Syndrome,” Journal of Clinical Endocrinology & Metabolism, Vol. 85, No. 2, 2000, pp. 692- 696.

[9] S. R. Torres-Harding, M. Sorenson, L. Jason, N. Reynolds, M. Brown, K. Maher and M. A. Fletcher, “The Associations between Basal Salivary Cortisol and Illness Symptomatology in Chronic Fatigue Syndrome,” Journal of Applied Biobehavioral Research, Vol. 13, No. 3, 2008, pp. 157-180.

[10] D. J. Torpy, and J. T. Ho, “Corticosteroid-Binding Globulin Gene Polymorphisms: Clinical Implications and Links to Idiopathic Chronic Fatigue Disorders,” Clinical Endocrinology, Vol. 67, No. 2, 2007, pp. 161-167.

[11] A. K. Smith, P. D. White, E. Aslakson, U. Vollmer-Conna and M. S. Rajeevan, “Polymorphisms in Genes Regu- lating the HPA Axis Associated with Empirically Delineated Classes of Unexplained Chronic Fatigue,” Pharmacogenomics, Vol. 7, No. 3, 2006, pp. 387-394.

[12] F. Tanriverdi, Z. Karaca, K. Unluhizarci and F. Kelestimur, “The Hypothalamo Pituitary-Adrenal Axis in Chronic Fa- tigue Syndrome and Fibromyalgia Syndrome,” Stress, Vol. 10, No. 1, 2007, pp. 13-25.

[13] J. R. Kerr, R. Petty, B. Burke, J. Gough, D. Fear, L. I. Sinclair, D. L. Mattey, S. C. Richards, J. Montgomery, D. A. Baldwin, P. Kellam, T. J. Harrison, G. E. Griffin, J. Main, D. Enlander, D. J. Nutt and S. T. Holgate, “Gene Expression Subtypes in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis,” Journal of Infe- ctious Diseases, Vol. 197, No. 8, 2008, pp. 1171-1184.

[14] S. J. Mathew, J. D. Coplan, R. R. Goetz, A. Feder, S. Greenwald, R. E. Dahl, N. D. Ryan, J. J. Mann and M. M. Weissman, “Differentiating Depressed Adolescent 24 h Cortisol Secretion in Light of their Adult Clinical Outcome,” Neuropsychopharmacology, Vol. 28, No. 7, 2003, pp. 1336- 1343.

[15] T. Miike, A. Tomoda, T. Jhodoi, N. Iwatani and H. Mabe, “Learning and Memorization Impairment in Childhood Chronic Fatigue Syndrome Manifesting as School Phobia in Japan,” Brain and Development, Vol. 26, 2004, pp. 442-447.

[16] T. Y. Segal, P. C. Hindmarsh and R. M. Viner, “Disturbed Adrenal Function in Adolescents with Chronic Fatigue Syndrome,” Journal of Pediatric Endocrinology & Metabolism, Vol. 18, No. 3, 2005, pp. 295-301.

[17] M. Maes, I. Mihaylova, M. Kubera and E. Bosmans, “Not in the Mind but in the Cell: Increased Production of Cyclo-Oxygenase-2 and Inducible NO Synthase in Chronic Fatigue Syndrome,” Neuro Endocrinology Letters, Vol. 28, No. 4, 2007, pp. 463-469.

[18] K. de Brosscher, W. V. Berghe and G. Haegeman, “The Interplay between the Glucocorticoid Receptor and Nuclear Factor-kb or Activator Protein-1: Molecular Mechanisms for Gene Repression,” Endocrine Reviews, Vol. 24, No. 4, 2003, pp. 488-522.

[19] M. Phillip, M. Aviram, E. Leiberman, Z. Zadik, Y. Giat, J. Levy and A. Tal, “Integrated Plasma Cortisol Conc- Entration in Children with Asthma Receiving Long-Term Inhaled Corticosteroids,” Pediatric Pulmonology, Vol. 12, No. 2, 1992, pp. 84-89.

[20] M. Ter Wolbeek, L. J. P. van Doornen, A. Kavelaars, E. M. van de Putte, M. Schedlowski and C. J. Heijnen, “Longitudinal Analysis of Pro- and Anti-Inflammatory Cytokine Production in Severely Fatigued Adolescents,” Brain, Behavior, and Immunity, Vol. 21, No. 8, 2007, pp. 1063-1074.

[21] D. Kovalovsky, D. Refojo, F. Holsboer and E. Arzt, “Molecular Mechanisms and Th1/Th2 Pathways in Corticosteroid Regulation of Cytokine Production,” Journal of Neuroimmunology, Vol. 109, No. 1, 2000, pp. 23-29.

[22] K. de Bosscher, M. L. Schmitz, W. Vanden Berghe, S. Plaisance, W. Fiers and G. Haegeman, “Glucocorticoid-Mediated Repression of Nuclear Factor-Kappab-Dependent Transcription Involves Direct Interference with Transactivation,” Proceedings of the National Academy of Science USA, Vol. 94, No. 25, 1997, pp. 13504-13509.

[23] C. M. McCormick and I. Z. Mathews, “Adolescent Development, Hypothalamic-Pituitary-Adrenal Function, and Programming of Adult Learning and Memory,” Progress in Neuropsychopharmacology and Biological Psychiatry, Vol. 34, No. 5, 2009, pp. 756-765.





Post a Comment

Featured Products From the ProHealth Store
Mitochondria Ignite™ with NT Factor® Energy NADH™ 12.5mg Ultra ATP+, Double Strength

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products


Article Comments



Be the first to comment on this article!

Post a Comment


 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS, Fibromyalgia & Lyme Disease treatment and research news
 Privacy Guaranteed  |  View Archives

How Glutathione Can Save Your Life

Featured Products

Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function

Natural Remedies

Running on Empty? Fuel Up with NADH Running on Empty? Fuel Up with NADH
Astaxanthin - A Little-Known but Power-Packed Nutrient Astaxanthin - A Little-Known but Power-Packed Nutrient
Three-Step Strategy to Reverse Mitochondrial Aging Three-Step Strategy to Reverse Mitochondrial Aging
Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery Energy Breakthrough - One Fibromyalgia Patient’s Fortuitous Discovery
Strontium - The Missing Mineral for Strong Bones Strontium - The Missing Mineral for Strong Bones

FIBROMYALGIA
What is Fibromyalgia?
Fibromyalgia Diagnosis
Fibromyalgia Symptoms
Fibromyalgia Causes
Fibromyalgia Treatments
Fibromyalgia Diet
Fibromyalgia Medications
M.E. & CFS
What is M.E./CFS?
M.E./CFS Diagnosis
M.E./CFS Symptoms
M.E./CFS Causes
M.E./CFS Treatments
M.E./CFS Diet
M.E./CFS Medications
LYME DISEASE
What is Lyme Disease?
Lyme Disease Diagnosis
Lyme Disease Symptoms
Lyme Disease Causes
Lyme Disease Treatments
Lyme Disease Diet
Lyme Disease Medications
FORUMS
Fibromyalgia
M.E. & CFS
Lyme Disease
General Health
WHOLESALE
AFFILIATES GUARANTEE
PRIVACY
CONTACT US
LIBRARY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing