ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

15 Health Benefits of Chia Seeds, According to Science

Natural Remedies for the Prevention of Dry Eyes

Tangerine Oil: A Citrusy Essential Oil With Well-Rounded Uses

Magnesium Deficiency Raises Your Risk of Many Chronic Ailments

Resveratrol supplementation improves arterial stiffness in type 2 diabetics

What Makes Spanish Marjoram Oil Special?

CoQ10's Potential Capabilities for Your Health

How Can Melatonin Benefit You?

Cloves: Boost Your Immune System the Sweet and Spicy Way

8 Chia Seed Recipes

 
Print Page
Email Article

New understanding of a key control mechanism in the brain

  [ Not Yet Rated ]   [ Discuss This Article ]
By Weizmann Institute Press Release • www.ProHealth.com • January 12, 2000


REHOVOT, Israel -- January 12, 2000 -- Despite more than a century of research on inhibitory neurons, very little is known on how this small population (10-20% of brain neurons) exerts its controlling effect on the brain. Pivotal for normal brain development, learning, and memory, it is not surprising that inhibitory neurons are involved in most neurological disorders. A recent study at the Weizmann Institute of Science, published in the January 2000 issue of Science, reveals key principles underlying the design and function of this inhibitory system.
By repressing the level of activity in neighboring neurons, inhibitory neurons (I-neurons) prevent the brain from quickly spinning out of control into hyper-excited states or full-blown epilepsy. One of the problems that children with autism and attention deficit hyperactivity disorders (ADHD) have is I-neuron malfunction: their inhibitory system does not effectively suppress unwanted information, impeding their ability to make choices. I-neuron malfunction is involved in memory disorders (such as Alzheimer's disease), neural trauma, and addictions. It also plays a role in a wide range of psychiatric disorders, such as depression, obsessive compulsive disorders, and schizophrenia.

In the past, researchers basically thought that I-neurons just sprayed an inhibitory neurotransmitter called GABA onto their neighbors. But this did not explain how they inhibited the right neurons at exactly the right time and to the right degree. The new study carried out in the laboratory of Prof. Henry Markram of the Weizmann Institute's Neurobiology Department shows how they achieve this.

Controlling the neuron crowd
The research team found new types of I-neurons, revealing that this tiny population is several times more diverse than previously thought. Further, using new methods that they developed, the researchers succeeded in recording directly how individual inhibitory neurons control their neighbors. They found that I-neurons build complex synapses (connections) onto their target neurons. The synapses selectively filter inhibitory messages, enabling I-neurons to shut down the activity in neighbors as required. These synapses act as fast-switching "if-then" filtering gates that allow inhibition to be applied only at the exact millisecond and to the right degree.
Each I-neuron establishes complex if-then gates onto thousands of neighboring neurons and is therefore "in charge" of controlling their activity. The gates allow I-neurons to rapidly switch their focus onto any one neuron that they are connected to. This ingenious design principle is what enables the small group of I-neurons to exert such a sophisticated effect, simultaneously "giving personal attention" to the activity of each of the neurons to which they are connected.

At the negotiating table
The researchers showed that a "discussion" between I-neurons and target neurons is involved in deciding which type of if-then gate should be set up to filter the inhibitory message. This decision-making process could allow each neuron in the brain to be inhibited in a potentially unique way. Dubbed the "interaction principle," this process generates maximal diversity of if-then gates, allowing more complex and finer control over large numbers of neurons.

A potential brain-mapping tool
The researchers went on to reveal a remarkable ability of I-neurons: they can sense neurons that share the same functions in the brain. I-neurons "select" groups of target neurons to construct the same type of if-then gates, possibly enabling the I-neurons to control groups of neurons collectively.

It also means that I-neurons can "smell-out" neurons in the brain that collaborate in the most elementary functions even if they seem different in almost every other way (i.e., they can identify neurons descended from the same "ancestors"). "I-neurons can trace family trees of neurons. In other words, they could help us to work out how neurons are related to each other. This could one day enable us to map the functional aspect of the brain according to the genealogy of neurons - an organizing principle that we never dreamt possible," says Markram. The researchers believe that the ability to detect functionally related groups in the brain, called "the homogeneity principle," results from common signal molecules released by target cells. I-neurons may use the signal molecules to determine what kind of if-then gates to build. Future research designed to identify the nature of these molecules could yield a potent tool for mapping the functional structure of the brain.

Source: Weizmann Institute Press Release, January 13, 2000. This research was funded by the Human Frontier Science Program Organization, the Israel Ministry of Science, the Israel Science Foundation, the US Navy, Minna James Heineman Stiftung, the Abramson Family Foundation and the Nella and Leon Benoziyo Center for Neurosciences. A member of the Weizmann Institute's Neurobiology Department, Prof. Henry Markram holds the Joseph D. Shane Career Development Chair.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world's foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.



Post a Comment

Featured Products From the ProHealth Store
FibroSleep™ Energy NADH™ 12.5mg Ultra ATP+, Double Strength


Article Comments



Be the first to comment on this article!

Post a Comment


 
Optimized Curcumin Longvida with Omega-3

Featured Products

FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%

Natural Remedies

The Most Powerful Natural Antioxidant Discovered to Date - Hydroxytyrosol The Most Powerful Natural Antioxidant Discovered to Date - Hydroxytyrosol
Front Line Defense Against Colds & Flu - Support for Healthy Immune System Balance Front Line Defense Against Colds & Flu - Support for Healthy Immune System Balance
Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients Cell-Charging Compound Gives Steady Energy to Fibromyalgia & Chronic Fatigue Patients
Could a B-12 Deficiency Be Causing Your Symptoms? Could a B-12 Deficiency Be Causing Your Symptoms?
Aching Muscles? Top 10 Nutrients to Take Back Your Life Aching Muscles? Top 10 Nutrients to Take Back Your Life

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map