ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Pumpkin Pie Turmeric Breakfast Smoothie - Vegan + Gluten-Free

Vitamin D supplementation extends life in mouse model of Huntington's disease

What’s Fenugreek Good For?

Omega-3 fatty acid stops known trigger of lupus

Print Page
Email Article

New understanding of a key control mechanism in the brain

  [ Not Yet Rated ]   [ Discuss This Article ]
By Weizmann Institute Press Release • • January 12, 2000

REHOVOT, Israel -- January 12, 2000 -- Despite more than a century of research on inhibitory neurons, very little is known on how this small population (10-20% of brain neurons) exerts its controlling effect on the brain. Pivotal for normal brain development, learning, and memory, it is not surprising that inhibitory neurons are involved in most neurological disorders. A recent study at the Weizmann Institute of Science, published in the January 2000 issue of Science, reveals key principles underlying the design and function of this inhibitory system.
By repressing the level of activity in neighboring neurons, inhibitory neurons (I-neurons) prevent the brain from quickly spinning out of control into hyper-excited states or full-blown epilepsy. One of the problems that children with autism and attention deficit hyperactivity disorders (ADHD) have is I-neuron malfunction: their inhibitory system does not effectively suppress unwanted information, impeding their ability to make choices. I-neuron malfunction is involved in memory disorders (such as Alzheimer's disease), neural trauma, and addictions. It also plays a role in a wide range of psychiatric disorders, such as depression, obsessive compulsive disorders, and schizophrenia.

In the past, researchers basically thought that I-neurons just sprayed an inhibitory neurotransmitter called GABA onto their neighbors. But this did not explain how they inhibited the right neurons at exactly the right time and to the right degree. The new study carried out in the laboratory of Prof. Henry Markram of the Weizmann Institute's Neurobiology Department shows how they achieve this.

Controlling the neuron crowd
The research team found new types of I-neurons, revealing that this tiny population is several times more diverse than previously thought. Further, using new methods that they developed, the researchers succeeded in recording directly how individual inhibitory neurons control their neighbors. They found that I-neurons build complex synapses (connections) onto their target neurons. The synapses selectively filter inhibitory messages, enabling I-neurons to shut down the activity in neighbors as required. These synapses act as fast-switching "if-then" filtering gates that allow inhibition to be applied only at the exact millisecond and to the right degree.
Each I-neuron establishes complex if-then gates onto thousands of neighboring neurons and is therefore "in charge" of controlling their activity. The gates allow I-neurons to rapidly switch their focus onto any one neuron that they are connected to. This ingenious design principle is what enables the small group of I-neurons to exert such a sophisticated effect, simultaneously "giving personal attention" to the activity of each of the neurons to which they are connected.

At the negotiating table
The researchers showed that a "discussion" between I-neurons and target neurons is involved in deciding which type of if-then gate should be set up to filter the inhibitory message. This decision-making process could allow each neuron in the brain to be inhibited in a potentially unique way. Dubbed the "interaction principle," this process generates maximal diversity of if-then gates, allowing more complex and finer control over large numbers of neurons.

A potential brain-mapping tool
The researchers went on to reveal a remarkable ability of I-neurons: they can sense neurons that share the same functions in the brain. I-neurons "select" groups of target neurons to construct the same type of if-then gates, possibly enabling the I-neurons to control groups of neurons collectively.

It also means that I-neurons can "smell-out" neurons in the brain that collaborate in the most elementary functions even if they seem different in almost every other way (i.e., they can identify neurons descended from the same "ancestors"). "I-neurons can trace family trees of neurons. In other words, they could help us to work out how neurons are related to each other. This could one day enable us to map the functional aspect of the brain according to the genealogy of neurons - an organizing principle that we never dreamt possible," says Markram. The researchers believe that the ability to detect functionally related groups in the brain, called "the homogeneity principle," results from common signal molecules released by target cells. I-neurons may use the signal molecules to determine what kind of if-then gates to build. Future research designed to identify the nature of these molecules could yield a potent tool for mapping the functional structure of the brain.

Source: Weizmann Institute Press Release, January 13, 2000. This research was funded by the Human Frontier Science Program Organization, the Israel Ministry of Science, the Israel Science Foundation, the US Navy, Minna James Heineman Stiftung, the Abramson Family Foundation and the Nella and Leon Benoziyo Center for Neurosciences. A member of the Weizmann Institute's Neurobiology Department, Prof. Henry Markram holds the Joseph D. Shane Career Development Chair.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world's foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.

Post a Comment

Featured Products From the ProHealth Store
Ultra ATP+, Double Strength Energy NADH™ 12.5mg Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Energy NADH™ 12.5mg Energy NADH™ 12.5mg
Improve Energy & Cognitive Function
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Vitamin K-2 – A Key Player in Cardiovascular and Bone Health Vitamin K-2 – A Key Player in Cardiovascular and Bone Health
More Weight Loss than Any Other Discovery in Supplement History More Weight Loss than Any Other Discovery in Supplement History
Relief for Dry, Itchy Skin Caused by Fibromyalgia Relief for Dry, Itchy Skin Caused by Fibromyalgia
Research Links Green Tea to Weight Loss Research Links Green Tea to Weight Loss
Safely Burn Away Body Fat Safely Burn Away Body Fat

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map