ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

T-cell memory finding may provide key to auto-immune disease vaccines

  [ 6 votes ]   [ Discuss This Article ]
By • • March 11, 1999

A basic science discovery concerning how part of the immune system remembers past opponents may provide the solution to a fundamental problem facing vaccines to treat auto-immune diseases such as AIDS, lupus or cancer. Researchers from the University of Chicago report in the journal Science that the cells that are crucial players for any vaccine against HIV-infected or cancerous cells are distressingly slow learners.

The problem, the researchers demonstrate, is that it takes several generations of intense instruction to make a lasting impression on a T cell. Creating large numbers of "memory" T cells that can recognize a trouble maker they have seen before and attack when they see it again requires prolonged continuous exposure to high levels of the intruder.

"This finding suggests that the typical approach to vaccines for treatment of cancer or AIDS is not often likely to produce the desired result," said author Philip Ashton-Rickardt, Ph.D., assistant professor of pathology at the University of Chicago. "But it also shows us how we can get around the problem."

Ashton-Rickardt's team -- including immunology graduate student Joseph Opferman and post-doctoral fellow Bertram Ober, Ph.D., all from the Gwen Knapp Center for Lupus and Immunology Research at the University of Chicago -- set out to answer a central question in immunology: Where do the T cells responsible for "remembering" a previous infection and fighting it off a second time come from?

When stimulated by an invader, T lymphocytes multiply and attack the infecting foreigner. Once they get the upper hand, most of these T cells are no longer needed and die off. A small percentage, however, survive and stand guard in case this particular invader comes back.

Immunologists have proposed two models of this process. One requires two parallel tracks for cell-killing T lymphocytes. Most of the T cells attack the foreigner then die off soon after victory. But a smaller group of T cells is preprogrammed to survive and to remember the invader. B lymphocytes, the immune cells that secrete antibodies, follow this pattern.

The competing model involves just one initial population of cell-killing T cells. Most of these cells die off after defeating the invader, but some cells survive and develop into memory cells which remain eternally vigilant for any subsequent attack.

The research team confirmed the second model. They found that it required intense, prolonged stimulation -- high levels of antigen for at least five cell divisions -- to create a significant number of memory T cells. Without strong stimulation for three to four days, few memory cells emerged. By finding the answer to this fairly basic scientific question, "we have stumbled into the world of clinical relevance," jokes Ashton-Rickardt.

"No vaccine trial to date," he said, "has been able to produce significant numbers of memory T lymphocytes, which are important in killing HIV-infected or cancerous cells. Now we know why, and we have a pretty good idea of how to change that."

The research team, working with mice, grew the memory T cells outside the body, which enabled them to challenge the cells constantly with high levels of antigen for four-to-five days -- a far more intense and prolonged confrontation than any vaccine scheme.

To test the effects, they injected the activated cells into mice without immune systems. Ten weeks later, the injected T cells were still effective, retaining all their cell-killing machinery.
"The great thing was that the memory cells were primed and ready. They required no help from other cells -- no cytokines, no co-stimulation," said Ashton-Rickardt. "They remembered and went after their targets as soon as they were exposed to them again. Although mice with normal immune systems take two or three days to mount an immune response, these memory T cells responded immediately."

The finding is particularly encouraging for those interested in vaccines as therapy for HIV infected patients, who lose their T-helper cells. Ordinarily, chemical signals from these T-helper cells are required to activate cytotoxic T cells, which are not damaged by HIV. But by growing cytotoxic T memory cells outside the body and exposing them to specially presented HIV antigens, this approach should produce effective cytotoxic T cells, which could destroy HIV-infected cells.

"We have the technology to try this already," explained Ashton-Rickardt. "Perhaps now we know how to use it."

Post a Comment

Featured Products From the ProHealth Store
Energy NADH™ 12.5mg FibroSleep™ Vitamin D3 Extreme™

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength

Natural Remedies

Sleep Like a Baby in Nature's Cradle Sleep Like a Baby in Nature's Cradle
Guarding Against the Dangers of Vitamin D Deficiency Guarding Against the Dangers of Vitamin D Deficiency
Coenzyme Q10 - The Energy Maker Coenzyme Q10 - The Energy Maker
When a Negative is Positive - Goodnighties Recovery Sleepwear When a Negative is Positive - Goodnighties Recovery Sleepwear
Complete and Natural Menopause Relief Complete and Natural Menopause Relief

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map