ProHealth health Vitamin and Natural Supplement Store and Health
Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help

|
|
|
|

Trending News

Gut Bacteria, Artificial Sweeteners and Glucose Intolerance

Culprits of Autism Identified: Toxins, Gut Bacteria, Nutritional Deficiencies, and Vaccines Made wit...

Vitamin E intake critical during 'the first 1,000 days'

Turmeric compound boosts regeneration of brain stem cells

Lower risk of mortality over thirteen year period in association with higher levels of vitamin D

Use of Broad-Spectrum Antibiotics Before Age 2 Associated with Obesity Risk

VIDEO: Beautiful Clouds - Relaxation and Meditation

Reverse Mitochondrial Damage

The Fast-Acting Solution for Healthy Digestive Function

Elevated plasma biomarkers of chronic inflammation in Gulf War illness

 
Print Page
Email Article

Treating Fibromyalgia with Relaxin (Vitalaxin)

  [ 154 votes ]   [ Discuss This Article ]
By Dr. Samuel K. Yue, M.D. • www.ProHealth.com • May 5, 1999




Dr. Samuel K. Yue, M.D.
Clinical Medical Director, HealthEast Pain Clinic
HealthEast Bethesda Lutheran Hospital & Rehabilitation Center, St. Paul, Minnesota


Introduction

Fibromyalgia is a debilitating disorder that is estimated to affect 2% (5 million) of the population of the United States. The ratio of female to male is approximately 9:1. It is also estimated that fibromyalgia costs the U.S. economy 9.2 billion dollars annually.

Symptoms

Symptoms accompanying this disorder include widespread muscular and joint pain, spasm and diffuse tenderness in most areas of the body, unrefreshing sleep, fatigue and emotional distress. The Arthritis Foundation describes fibromyalgia as a form of soft tissue and muscular rheumatism. It is frequently associated with disorders such as irritable bowel, chronic fatigue and myofascial pain syndrome.

Diagnosis

Diagnosis of fibromyalgia is made by clinical elimination. Patients with no known diagnosis but with widespread pain, muscle spasm and fatigue of greater than three months duration; examination of specific sites of the body revealing 11 of the 18 sites on both sides of the body are painful on palpation, the diagnosis of fibromyalgia is made. These specific sites are at the base of the occiput, the cervical anterior, the trapezius, the supraspinatus, the second rib, the epicondyle on the elbow region, the greater trochanter, the gluteus and the fat pad on the knee.

Associated Disorders

Chronic fatigue is often associated with fibromyalgia as well as many other disorders. These disorders include irritable bowel and bladder, panic disorder, amnesia disorder, allergic rhinitis, blurred vision, muscle fasciculation, myasthenia, interstitial cystitis, sleep disorder, headache, bruxism, TMJ syndrome, alopecia, thermal regulatory dysfunction, lymphadenalgia, dyspnea, chemical sensitivity, endometriosis, PMS, heart palpitation, photophobia, vertigo, Raynaud's phenomenon and dysmenorrhea. The etiology of fibromyalgia is unclear and unknown, and there is no effective curative treatment. Current therapy is directed primarily to alleviation of symptoms and management of pain.

Current Therapies

Therefore, management using nonprescription medication, prescription anti-inflammatory drugs, injection of local anesthetic agents, physical therapy and exercise all are used to reduce symptoms related to the problems mentioned above. Medications such as tricyclic antidepressants are commonly prescribed to promote deeper sleep, which sometimes reduce symptoms. However, almost all current therapies are limited to reducing the severity of symptoms rather than treating the cause of the symptoms.

Observations about Female Fibromyalgia Patients

Over the course of many years I have observed fibromyalgia patients and have come to some rather interesting observations. Female fibromyalgia patients seem to have increased severity of their symptoms one week before and one week during menstruation on a regular basis. Further, many fibromyalgia patients’ symptoms appear or to be greatly aggravated during menopause between their fourth and fifth decades, or prematurely through surgically induced menopause. One other interesting observation I have made during these years was that many fibromyalgia patients reported remission of their symptoms when they were pregnant, and the return of their S/S almost within one to two months after delivery.

Myofascial pain syndrome

At about the same time, I began to utilize botulinum toxin in many patients with myofascial pain syndrome. I also found that many fibromyalgia patients with cervical neck pain or headaches responded to botulinum toxin injections to the musculature surrounding the cervical neck. This indicated to me that somehow the musculature on these patients is shortened and contracted, and that the tonicity of the muscles must play a part in the pathogenesis of their symptoms.

Discovery of Relaxin

These observations gave me insight to begin searching for any agent or hormone within our body that would have an effect on the collagen of connective tissues. This agent must have effect on the contraction or the shortening of the muscle through the effect on collagen, resulting in spasm and spasticity of the musculature. It was through this search that I came to a little known pregnancy hormone called relaxin which is produced ten times higher during pregnancy in most mammals.

Role of Relaxin

Relaxin [the key ingredient in Vitalaxin] has a diverse range of effects, including the production and remodeling of collagen, increase in elasticity and relaxation of muscles, tendons and ligaments during pregnancy, particularly in the pelvis. It is this hormone that is responsible for the remodeling of the pelvic region in preparation for descent of the fetus.

The physiology of relaxin has been well documented in the literature regarding its structure, function and property. It is a polypeptide very similar to insulin and is secreted in females in the ovaries, and in males in the seminal tubules.

Preparation of Relaxin

Relaxin hormone has been prepared from animal form, particularly the pregnant sow, and had been used quite extensively in the 50's and 60's as an agent for shortening of labor, ripening of the cervix and the treatment of scleroderma and peripheral vascular disease. More than three thousand people have been treated with relaxin with various degrees of response to the porcine relaxin. Human form of relaxin has been prepared synthetically by recombinant DNA method and is presently produced by Connetics Corporation in Palo Alto, California as an investigational drug for treatment of scleroderma.

Relaxin Secretion

Although much is known about the natural production of relaxin in pregnancy related functions, until recently little was known about its active sites in nonpregnancy related tissues. Significant information has been discovered and reported that involves specific relaxin binding cells in the cervix, mammary glands, nipples, small intestines, and skin of the pregnant pig. The study on humans indicated relaxin is secreted in a pulsatile nature in females. This usually is measurable in the blood stream approximately at the menstrual mid cycle surge of the luteinizing hormone or approximately seven to ten days after ovulation. In the male, the level of relaxin is extremely low and is difficult to measure with current methods.

However, the male relaxin level is measurable in the seminal fluid where it can reach approximately 200 nanograms per ejaculation in the normal male. It is postulated that retrograde pulsatile release of relaxin is possible in males. Because of its association with pregnancy, relaxin is well known as the third major pregnancy hormone along with progesterone and estrogen.

Relaxin in the Reproductive Cycle

Relaxin is well known as an agent for remodeling of the reproductive tract, collagen remodeling, thereby facilitating the birth process. Relaxin increases peripherally approximately seven to ten days after the mid cycle surge of luteinizing hormone and if conception occurs, continues to rise to over 800 picograms per ml by the third week. During pregnancy, relaxin peaks at the 10th week and is maintained at about 500 picograms per ml for the remainder of the pregnancy. Relaxin remodels the reproductive tract, including ripening of the cervix, thickening of the endometrium, increases the vascularization of the uterus and affecting collagen synthesis to cause ligaments and connective tissues to elongate and relax.

It has also been observed that Raynaud's phenomenon completely disappeared during early pregnancy. Patients who have fibromyalgia and associated symptoms reported remission of their symptoms when they were pregnant, and there appears to be a direct correlation between the rise of relaxin level during pregnancy and the remission of their symptoms.

Theory on Relationship of Relaxin to Development of Fibromyalgia

It is postulated by this author that the genesis of fibromyalgia is related to systemic deficit of relaxin hormone, or inability of the body to utilize the existing hormone (receptor site pathology and/or auto-immune antibodies to the circulating relaxin). The microscopic amount of pulsatile release of relaxin hormone is necessary in order to maintain the integrity of collagen and connective tissues of one’s body.

Further, through its direct effect on many of the documented receptor sites and its indirect effect on collagen, relaxin does exert its effects on many of the systemic structures. The direct effect is stimulation of the receptor sites to produce the desired functions and indirect effect through collagen remodeling, resulting in elastic and flexible collagen, which is the building block for all connective tissues.

Direct and Indirect Effects

The combined direct and indirect effects can be broken down into the following: striated muscles; smooth muscles; central nervous system; autonomic nervous system; connective tissues in the form of skin, ligament, tendon and cartilage; and lastly, the cardiac muscles. Therefore, the hormone has both direct and indirect effects that affects the individual patient as a whole, affecting almost all parts of the body through these two routes of mechanism of action. All symptoms suffered from fibromyalgia can be explained by the lack of the hormonal effect on these six areas.

It is therefore postulated that restoration with daily supplemental replacement of relaxin on these patients will restore all the symptoms of fibromyalgia. Attempts will not be made to explain how each area is restored with relaxin hormonal supplementation.

Striated Muscles:

It is this author's postulation that relaxin will release the sustained muscle contracture or spasm on many fibromyalgia patients. The etiology of how relaxin directly affects the striated muscle is unclear at the present time. Animal models have shown that striated muscles have no receptor site for relaxin. Therefore, relaxin must either exert its effect on the central nervous system or on the receptor sites within the muscles that are too low to be detectable at this time. However, once the sustained muscle spasms or contractures are released, the associated chronic fatigue will be minimized. Therefore, many patients’ abnormal muscular tone will be ablated; resulting in resolution of their tender points and muscle originated pain, spasm and fatigue. The control of the central nervous system to the striated muscles must then be facilitated to a point that abnormal muscle movements (fasciculation, twitches, etc) are also ablated.

I believe this will be the mechanism by which fibromyalgia patients regain proper function of their musculature. There are many other areas that are not being addressed at this time, and I hope future research will delineate exactly how relaxin affects the individual component of the striated muscles and other areas of one’s body. Muscle efficiency leads to better control of muscles by the central nervous system and decrease of tight muscle bands, eventually deactivating the trigger points, resulting in a normal musculature on these muscles. These are the direct and indirect effects on the striated muscles which appear to cause the problem of chronic muscle and joint pain in addition to chronic fatigue that is commonly associated with fibromyalgia.

Smooth Muscles:

This author also postulates that smooth muscle is directly affected by relaxin. The sustained smooth muscle contracture and spasm are released through direct effect of relaxin on the smooth muscles. Receptor sites in smooth muscles have been documented in animal models, therefore, relaxation of smooth muscles have been proven to be a direct effect of relaxin. Further, because of abnormal smooth muscle tone is released, the smooth muscle denervation effect as described by Dr. C. Chan Gunn will be eliminated.

The ANS and CNS, therefore, can control the smooth muscles in an efficient manner without over or under compensation as seen in denervated organs. The denervation effect of smooth muscles in this instance is related to the delayed response of the smooth muscles and not the effect of denervation. The result, however, is the same and the four components of denervation (super-duration/delayed response, hyper-excitability, increased susceptibility and super-reactivity) are mimicked exactly by inelastic and inflexible smooth muscles.

Relaxin imparts good quality collagen on smooth muscles allowing efficient and proper control of the organs by the central nervous system through the autonomic nervous system. Therefore, smooth muscles and organs are able to maintain the proper signals to the central nervous system, allowing a normal control and a normal signal to be transmitted to the central nervous system. Homeostasis is therefore properly maintained on these smooth muscles and its related organs.

Central nervous system:

It has been shown in animal models that mice brain tissue contains receptor sites for human relaxin. Therefore, it can be assumed that human central nervous system contains receptor sites for human relaxin. The exact mechanism of how relaxin diffuses through the blood brain barrier is unclear, and polypeptides have been shown to be unable to cross this barrier. The implication of this assumed effect of relaxin on the CNS is rather significant.

Nonrefreshing sleep (defective stage 4 sleep), cognitive dysfunction and affective dysfunction are some of the major CNS manifestation of patients who suffer from fibromyalgia. Pregnant fibromyalgia patients have reported the restoration of their sleep pattern. Therefore, relaxin must somehow restored the aberrant sleep pattern on these patients. It may also restore the affective dysfunction and cognitive dysfunction of the central nervous system. Circumstantial evidence indicated that this might have been the case.

These evidences are the increased CNS component of dysmenorrhea S/S during menstruation, and increased CNS S/S during menopause corresponding to the decrease of relaxin level. Further, postpartum depression may be implicated as secondary to abrupt cessation of the high level of relaxin after delivery. In susceptible patients, affective and cognitive dysfunctions and sleep disturbance may develop into severe postpartum depression that may include psychosis. Therefore, in reverse, deficit of relaxin in normal patients might cause similar problems. The "ABC" (affective, behavioral and cognitive) part of our CNS functions might be directly affected by relaxin in addition to aberrant sleep pattern.

Relaxin has also been known to release growth hormone in animal models. Growth hormone secretion marker IGF-1 (somatomedian-C) has been found to be significantly lower in fibromyalgia patients. Secretary dysfunction of growth hormone has been hypothesized by Dr. RM Bennett of Oregon to be related to increased somatostatin tone (the major inhibitor of GH release in the pituitary) and defective stage 4 sleep.

Supplemental relaxin may restore the normal secretary functions of the CNS at least as far as GH is concern. Whether relaxin has any direct function in releasing neurotransmitters within the CNS (particularly in the hypothalamus, the pituitary, the pineal gland and the brain stem) is unclear. Its main functions within the CNS may be regulatory effects on the secretary process of the neurotransmitters. The relative excess or deficit of many of the neurotransmitters is restored to homeostasis levels. The net results are restoration of many usual and unusual complains (headache, thermal regulatory dysfunction, etc.) of fibromyalgia patients related to the CNS.

The indirect effect of relaxin on the central nervous system is speculative. Relaxin improves integrity and quality of collagen within the nervous tissues. Normal conductivity and response of these nervous tissues are restored and facilitated. The overall CNS functions regain their former homeostasis, elimination of abnormal, excessive and aberrant responses and re-establishment of normal CNS activities. These effects of relaxin on the CNS are probably premature at this time and would need further studies in the future to delineate the exact route of mechanism on how relaxin exerts its indirect effect on the CNS.

Autonomic nervous system:

The autonomic nervous system of most fibromyalgia patients is imbalance with predominate excessive sympathetic outflows. The term dysautonomia is often used to describe these patients’ S/S related to the ANS. There are significant problems related to smooth muscle dysfunctions (see effect of relaxin on smooth muscles) and the control of these organs as alluded to in the beginning of this discussion. This has to do with imbalance of the relatively increased sympathetic or decreased parasympathetic tone of the ANS. The inability of the ANS to maintain a homeostatic level of control on the smooth muscles and sphincters of many of the inner organs results in the under/over performance of these organs.

I believe that the direct effect of relaxin on smooth muscles and the nervous tissues will cause the ANS to restore back to normal. The imbalance of the sympathetic and parasympathetic outflows is reversed. Therefore, homeostasis of the inner organs and control of the sphincters and smooth muscles of the organs will be facilitated by relaxin, thus restoring the autonomic dysfunction.

The indirect effect of relaxin to the ANS is as speculative as the CNS where the neural tissue conductivity is improved through the better integrity and elasticity of collagen. The net effect is facilitation of conduction of nervous impulses directly from the organs through the ANS to the CNS and back to the organ. Therefore, the efficient control of all inner organs by the ANS results in normal functioning of internal components of our body. Dysautonomia is reversed and the internal homeostasis is maintained.

Cardiac muscles:

It has been shown that relaxin exerts inotropic and chronotropic effects on the cardiac muscles. There are relaxin receptor sites within the cardiac muscles that relaxes the cardiac muscles. The deficit of relaxin might be accounted for palpitations and arrhythmia that are so often felt by fibromyalgia patients. The cardiac function in these patients is not maintained in the most efficient state due to decreased pumping mechanism secondary to muscle inelasticity. The resting compliance of the heart is decreased, resulting in compensations through increase in heart rate. It is postulated by this author that relaxin will stabilize the cardiac function of many fibromyalgia patients resulting in decreased palpitations and arrhythmia, increased efficiency and pumping mechanism of the cardiac muscles.

The indirect result of relaxin on cardiac muscles would be further improvement of conductivity and pumping mechanism. In the presence of relaxin, better collagen is produced, conductivity and elasticity of the cardiac muscles improved, and resting compliance of the heart increased, and overall cardiac functions restored. The net result is an efficient pumping heart with ability to circulate the blood throughout the entire body.

Connective tissue:

The direct effect of relaxin on the superficial connective tissues has only recently been discovered. It is documented that relaxin receptor sites are found in hair follicles and epidermal cells of the skin in the pig. Therefore, relaxin exerts its direct effect on dermal cells and hair follicles resulting in better growth rate of the hair and skin. Relaxin exerts its well-known indirect effect on tissue remodeling, particularly during pregnancy (pelvic remodeling). This increases the flexibility and elasticity of the pelvic floor to facilitate childbirth. In combination with the direct and indirect effects of relaxin on the other 5 systems mentioned in this discussion, it is no wonder that pregnant fibromyalgia patients often reported remission of their overall S/S.


Fibromyalgia and Relaxin Deficiency

Therefore, the pathogenesis of fibromyalgia may be a direct result of overall deficit of relaxin, or inability of the receptor sites to bind with circulating relaxin (defective receptor sites, autoimmune antireceptor or antirelaxin antibodies?). The hypothesis, however, must account for the pathogenesis of various subgroups as in juvenile fibromyalgia, fibromyalgia from stress, trauma or illness-related difficulties, and fibromyalgia during menopausal time. Further, the explanation must also include why males have fibromyalgia.

Juvenile fibromyalgia:

It is interesting to this author that fibromyalgia does not occur below a certain age. For example, it is unusual to find fibromyalgia below ten years of age. Therefore, since the reproductive organs in both males and females only produce relaxin during the second growth phase, the pathogenesis of fibromyalgia according to relaxin deficit can only occur during the second growth phase. Any patient who carries fibromyalgia symptoms before the second growth phase must be examined carefully in order to avoid labeling these patients as having fibromyalgia.

It is interesting to see that in juvenile fibromyalgia, young females and males have a much closer ratio, 6:4. It is also interesting to see that many of these female juvenile fibromyalgia patients have significant symptomatology related to dysmenorrhea and irregular menstruation. Such symptoms are indicative of decrease availability of the pulsatile relaxin. Insufficient relaxin at the critical growth stage of these patients results in poor quality and inelastic collagen for the rapid growth. Growth pain and fibromyalgia symptoms begin to appear.

Further, since females develop second growth phase sooner than males, growing pain and fibromyalgia symptoms occur younger in females than males and is related to the relatively inadequate relaxin supply when the body demands a huge quantity of collagen for rapid growth. Therefore, duration of growing pain during this rapid growth phase may be a predictor of ability of a person to outgrow their early fibromyalgia S/S. If deficit of relaxin persists, then many of these young teenagers would eventually develop fibromyalgia. In male juvenile fibromyalgia, growth is usually adequately addressed as their rapid growth phase diminishes and the supply of relaxin and the production of collagen are balanced.

It is this author's belief that male juveniles outgrow their fibromyalgia state more often than females because of the cyclical nature of the female reproductive functions. Further, because of difficulty with menstruation, many of these young females are placed on BCP (birth control pills) early to chronically suppress their reproductive functions and to reduce S/S related to menstruation and dysmenorrhea. The use of BCP for this purpose might compound the issue of inadequate or deficit of relaxin on these female patients.

Therefore, with increasing use of birth control pills at a younger age and extending to include their normal productive age from the 20 -30's to 40's, the incidence of fibromyalgia at a younger age, particularly in woman, will increase significantly in the future. The slow shift of higher incidence of younger female population of fibromyalgia in the last 20-30 years may be linked to the introduction and popularity of oral BCP in the last 30-40 years. Epidemiological studies are necessary to confirm this possible causal observation.

In the adult fibromyalgia population one sees two different types of pathogenesis that leads to the development of fibromyalgia. It is this author's belief that primary fibromyalgia should be reserved for patients who develop fibromyalgia during the second growth phase whereas secondary fibromyalgia is related to iatrogenic or environmental causes. This author does see two types of fibromyalgia (fast Vs slow onset) that begin their onset at adult time.

Fast Onset Fibromyalgia

Fast onset fibromyalgia usually occurs in patients who had their relaxin level or reproductive organs abruptly eliminated or removed. A good example of this would be oophorectomy and hysterectomy so often performed on young women in their 30's and 40's. The onset often began after oophorectomy and hysterectomy, depending on the constitutional susceptibility of each individual patient.

On some patients it was almost immediate, and within four to five months after removal of the ovaries a full-blown picture of fibromyalgia would develop. Others would take a few years from the time of removal of the ovaries before fibromyalgia became a presenting problem (probably related to the availability of secondary source of relaxin). Patients who had myofascial pain syndrome and rapidly progress to fibromyalgia must be evaluated with sudden deficit of relaxin in mind. Rapid onset type of fibromyalgia also occurs during menopause where many women develop symptoms due to natural cessation of ovarian functions.

It is believed there are secondary sources of relaxin in our body. Chronic suppression of primary ovarian or prostate source of relaxin (e.g. BCP in female and prostate diseases in male) will quickly exhaust the secondary source of relaxin. If recovery of the primary source of relaxin is not possible, rapid onset of fibromyalgia will develop as a consequence. Therefore, in susceptible patients who have primary source of relaxin but minimal secondary sources, deficit of relaxin from the primary source will rapidly progress to fibromyalgia. This may occur anytime during the early womanhood to menopausal time in female and the entire adulthood in male.

Slow Onset Fibromyalgia

Slow onset fibromyalgia may be related to the gradual deficit of relaxin on a long-term basis. The symptoms are often precipitated by small traumatic events, stress in the individual or family, minor or major illness/surgeries which all serve as the nidus to precipitate fibromyalgia. This type of deficit is easily explained in women where one can definitely gauge the ovarian function. The gradual cessation of their ovarian function results in irregular menstruation, resulting in gradual decrease of relaxin production. S/S of fibromyalgia slowly develop over time until full blown picture of fibromyalgia emerged. This may be the hallmark for the diagnosis of slow-onset secondary fibromyalgia in female.

Male Patients,

In a poster presented in the 1996 Annual Meeting of the American Academy of Pain Management, this author addressed the issue of low level of testosterone in male patients who complained of persistent musculoskeletal pain. Blood samples of these male patients (including several juveniles) indicated that >70% have low or below normal level of testosterone. The relationship between low level of testosterone and development of fibromyalgia is definitely significant. The probable causal relationship is as follow: low level of testosterone indicates lower reproductive secreting function implicating low secretion of relaxin in the seminal tubules. Therefore, low normal or below normal level of testosterone during teenager and early adulthood may be a predictor of the likelihood that particular individual male may develop fibromyalgia during his lifetime.

Juvenile Male Patients

It is somewhat difficult to apply the sequence of events , slow or rapid onset fibromyalgia, in juvenile male patient. Good hypotheses that apply to the female must somehow equally apply to the male. Male fibromyalgia patients definitely exist and it is this author's opinion that there are more male fibromyalgia patients than is presently diagnosed. The ratio of 9:1 will change once the public and physicians are aware that male fibromyalgia patients do exist. Since it is difficult to measure the functional relaxin level in males, this author has attempted to measure testosterone as a function of male reproductive capabilities.

This author also postulates that low level of testosterone in the male can infer that the relaxin level is also low in these patients. No conclusion can be drawn with a normal testosterone level. With this in mind, this author began measuring testosterone levels in all males who presented to the Pain Clinic in the last two to three years. The testosterone level is presented in Figures 2, and out of these male patients who presented to the Pain Clinic with musculoskeletal pain, almost 60 to 70% had an abnormal level of testosterone. Many of these patients appear to carry a diagnosis of fibromyalgia by definition alone.

However, many of these male patients also have had multiple back surgeries, cervical neck surgeries, shoulder and knee surgeries without much help in reduction of pain. Some have been labeled as failed back syndrome, chronic cervical neck pain and spasm or arachnoiditis. The underlying etiology may not be of spinal or other surgical reasons but may be from fibromyalgia and its associated S/S. Prostatitis and various difficulties with their reproductive functions also appear to be more common in this male population.

I postulate that males who carry a low level of testosterone have low level of relaxin. Circulating relaxin through retrograde ejection of relaxin through the seminal tubule to the systems may be insufficient to exert the systemic effects and to produce good quality collagen, resulting in fibromyalgia. Besides age-related degeneration of the reproductive function, many illnesses, stress, trauma, surgeries and other factors that precipitate fibromyalgia in males must also be evaluated on the effect these events exert on the reproductive organ. E.G., the impact of major surgery (as in cardiac bypass) on the function of the reproductive organ of the male patient is unclear, nor has it been studied.

Therefore, all male pain patients’ reproductive function must be evaluated and the testosterone level measured in order to eliminate fibromyalgia as a diagnosis. Once these evaluations are completed, male fibromyalgia conforms nicely to the hypothesis that deficit of relaxin may be the cause of juvenile, rapid and slow onset fibromyalgia. Decrease of relaxin level in the male may be reflected in the decreased level of testosterone, whereas decreased relaxin level in female may be better reflected in the reproductive cycles, and the associated S/S within these cycles.

Conclusions

Therefore, it is the postulation of this author that lack of relaxin is the pathogenesis of fibromyalgia. Further, replacement of this hormone may alleviate all the symptoms related to fibromyalgia and that the replacement is not of a curative nature but in control of the disease as in insulin being able to control adult-onset diabetes.

Treatment

Treatment for these patients may require daily infusion or injection of 12 to 16 weeks of relaxin. This will allow the body to restore all the abnormal symptoms that are associated with the direct effect of relaxin deficit, to restore and remodel the body's inflexible and inelastic collagen. A maintenance dose of relaxin, lasting several days on biweekly or monthly basis would then be sufficient to maintain the health of these patients.

A small subset of fibromyalgia patients may not respond to the daily supplemental replacement of relaxin since the pathology may be related to antibody formation to the receptor sites or relaxin. Animal relaxins with different molecular structures but similar agonist effect may provide some therapeutic effect when human relaxin fails.

The result of a pilot study of human relaxin on fibromyalgia conducted by this author is inconclusive. However, a further double blind study with longer longitudinal time frame and a larger sample size will eliminate the placebo effect. This will determine whether relaxin is effective in reducing the patients' signs and symptoms related to fibromyalgia.

If the hypothesis related to the deficit of relaxin is proven to be sound from such a study, the exact mechanism of how this hormone affects individual suffering from fibromyalgia must be meticulously studied, and the hypothesis refined and reconfirmed. It is through these types of observations and studies that this devastating disease would be eliminated and controlled.

Editor's Note: LIVE CHAT WITH DR. YUE

We invite you to Chat with Dr. Yue about relaxin and its role in the treatment of Fibromyalgia.

Dr. Samuel Yue, M.D., is currently director of the Minnesota Pain Center, St. Paul, Minnesota, and Chairman of Sky Research and Development, Inc., and Sky Biohealth Solutions, Inc. He is certified by the American Board of Anesthesiology (1987), and holds licensure by both the State of Minnesota: Medicine and Surgery and the State of Iowa: Medicine and Surgery.

Relaxin "hormone replacement therapy" is Dr. Yue's third major introduction of methodology for pain treatment. Previously, he successfully introduced and popularized two other significant advancements.

WHEN: April 18, 2001
TIME: 2pm Pacific, 4pm Central, 5pm Eastern
WHERE: The ImmuneSupport.com chat room




Please Discuss This Article:   Post a Comment 



[ Be the first to comment on this article ]




 
Free Chronic Fatigue Syndrome and Fibromyalgia Newsletters
Subscribe to
Our FREE
Newsletter
Subscribe Now!
Receive up-to-date ME/CFS & Fibromyalgia treatment and research news
 Privacy Guaranteed  |  View Archives

Save on Vitamins and Supplements

Featured Products

Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Vitamin D3 Extreme™ by ProHealth Vitamin D3 Extreme™ by ProHealth
50,000 IU Vitamin D3 - Prescription Strength
FibroSleep™ by ProHealth FibroSleep™ by ProHealth
The All-in-One Natural Sleep Aid
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%

Natural Remedies

Green Coffee Extract: Unique Obesity Intervention Green Coffee Extract: Unique Obesity Intervention
Live Longer: Groundbreaking Research on Omega-3s Live Longer: Groundbreaking Research on Omega-3s
Anti-Inflammatory Properties of Tart Cherry Anti-Inflammatory Properties of Tart Cherry
Undenatured Type II Collagen - Chicken Soup for Your Joints Undenatured Type II Collagen - Chicken Soup for Your Joints
The Remarkable Benefits of Reishi Medicinal Mushrooms The Remarkable Benefits of Reishi Medicinal Mushrooms

FIBROMYALGIA RESOURCES
What is Fibromyalgia?
Fibromyalgia 101
Fibromyalgia Symptoms
Fibromyalgia Treatments
| CFS RESOURCES
What is CFS?
ME/CFS 101
ME/CFS Symptoms
ME/CFS Treatments
| FORUMS
Fibromyalgia
ME/CFS
ADVANCED MEDICAL LABS
WHOLESALE  |  AFFILIATES
GUARANTEE
CONTACT US
PRIVACY
RSS
SITE MAP
ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus
Credit Card Processing