ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

10 Fibro-Friendly Foods with a Bonus: Beautiful Skin

Fight Back! Win the War Being Waged Against Your Immune System

The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimm...

Studies Show that Magnesium L-threonate Improves Brain Plasticity, Leading to Direct and Significant...

Clary Sage Oil May Be Pricey, but Its Benefits Are Priceless

Component of red wine, grapes can help to reduce inflammation, study finds

Poly MVA: A Novel Therapy for Increasing Energy, Repairing DNA, and Promoting Overall Health

Acupressure reduced fatigue in breast cancer survivors

Omega-3 fatty acid stops known trigger of lupus

What’s Fenugreek Good For?

Print Page
Email Article

OHSU Researchers Uncover Genes Involved in Early Stages of Alzheimer's Disease

  [ 80 votes ]   [ Discuss This Article ] • April 27, 2004


Researchers at Oregon Health & Science University (OHSU) have identified a set of genes that appear to be involved in the development of Alzheimer's disease. They hope this information will help scientists create of methods for early detection of the disease and for the development of therapeutic strategies to delay or even stop its progression.

P. Hemachandra Reddy, Ph.D., of the OHSU Neurological Sciences Institute is the first and corresponding author of the paper, which will be published online on April 27, prior to its appearance in the journal Human Molecular Genetics. "Through studying a mouse model of Alzheimer's, the research team found that a series of genes related to mitochondrial metabolism in brain cells were more active than in normal mice," Reddy said. "Mitochondria are structures located in the cytoplasm of cells that produce energy for the cell. Prior research has linked Alzheimer's to mitochondrial function. However this is the first time genes that are responsible for early cellular change in Alzheimer's disease pathogenesis have been identified."

Currently, there are no early detectable biomarkers for Alzheimer's, and there is a lack of understanding of the functional changes caused by this disease, particularly at its early stages. To intervene before neurons become irreversibly damaged, an understanding of early cellular events in the progression of Alzheimer's is critical. Studies of "pre-symptomatic" human subjects suggest that pathologic changes in the brain occur years before symptoms are evident, suggesting that the brain tissue from patients dying from Alzheimer's exhibits physiologic features indicative of a very late stage in the degenerative process.

To determine early cellular changes connected to Alzheimer's disease, the OHSU scientists studied mice that overexpress human mutated amyloid precursor protein. These genetically-altered mice produce heightened levels of amyloid precursor protein. Over time, higher than normal levels of this protein can result in structures in the brain called beta amyloid plaques, which are thought to be either a cause or an effect of Alzheimer's disease.

By studying 11,283 mouse genes and using a gene chip technology called microarray, OHSU scientists were able to identify a much smaller set of distinct genes that functioned differently in the diseased mice from those in healthy mice. These genes are involved in mitochondrial energy metabolism and programmed cell death.

"We studied gene expression levels at three distinct stages of disease progression in the genetically-altered mice relative to age-matched wild-type normal mice," explained Reddy. "We conducted gene expression analysis long before (2 months of age), immediately before (5 months) and after (18 months) the appearance of beta amyloid plaques. In doing this, we found that these mitochondrial genes were more active at 2 months of age when compared to normal mice, and in some cases their activity heightened as the disease progressed. We believe the abnormal gene expression comes in response to beta amyloid-induced mitochondrial dysfunction, even in its early stages. Based on prior research, it's thought that energy metabolism in mitochondria is impaired by heightened levels of beta amyloid in the brain. We believe the genes identified in our study increase their activity to compensate for this damage, but unfortunately in the end they cannot keep up with the progression of Alzheimer's."

A companion study recently published in the journal NeuroMolecular Medicine also found very similar gene expression differences in Alzheimer's disease patients. Scientists believe this demonstrates the value of the mouse model in gaining new knowledge and developing future human therapies. "This work likely will sharpen the focus of research on the possible links between mitochondrial gene expression and damage that occurs within and to neurons as Alzheimer's progresses. Understanding these links could lead to the development of novel and effective interventions for this disease," said Stephen Snyder, Ph.D., of the National Institute on Aging's (NIA) Neuroscience and Neuropsychology of Aging Program.

The research was partially funded by the NIA, a component of the National Institutes of Health. Additional financial support was provided by the Alzheimer's Association of Oregon, the Medical Research Foundation of Oregon, the American Federation for Aging Research, the Layton Aging and Alzheimer's Disease Center at OHSU, and an Advanced Research Career Development Award provided by the Department of Veterans Affairs. Source: (this is a press release).

Post a Comment

Featured Products From the ProHealth Store
Ultra EPA  - Fish Oil Vitamin D3 Extreme™ Ultra ATP+, Double Strength

Looking for Vitamins, Herbs and Supplements?
Search the ProHealth Store for Hundreds of Natural Health Products

Article Comments

Be the first to comment on this article!

Post a Comment

Natural Pain Relief Supplements

Featured Products

Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
Ultra ATP+, Double Strength Ultra ATP+, Double Strength
Get energized with malic acid & magnesium
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health
Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%

Natural Remedies

Research Links Green Tea to Weight Loss Research Links Green Tea to Weight Loss
Strengthen Cell Function with Energy-Boosting Niagen Strengthen Cell Function with Energy-Boosting Niagen
Vitamin E: Super Antioxidant We Only Thought We Knew Vitamin E: Super Antioxidant We Only Thought We Knew
How I Found My Long-Lost Energy How I Found My Long-Lost Energy
Carry a Massage Therapist in Your Pocket Carry a Massage Therapist in Your Pocket

ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
Credit Card Processing
Be the first to know about new products, special discounts and the latest health news. *New subscribers only

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2016 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map