ProHealth health Vitamin and Natural Supplement Store and Health
Home  |  Log In  |  My Account  |  View Cart  View Your ProHealth Vitamin and Supplement Shopping Cart
800-366-6056  |  Contact Us  |  Help
Facebook Google Plus
Fibromyalgia  Chronic Fatigue Syndrome & M.E.  Lyme Disease  Natural Wellness  Supplement News  Forums  Our Story
Store     Brands   |   A-Z Index   |   Best Sellers   |   New Products   |   Deals & Specials   |   Under $10   |   SmartSavings Club

Trending News

Inflammation Disrupts Memory - What Can You Do to Protect Your Brain?

All About Ginkgo Biloba: Benefits of This Timeless Herbal Supplement

Yarrow Oil: Here's Why It Deserves a Place in Your First-Aid Kit

Artificial sweeteners linked to risk of weight gain, heart disease and other health issues

Vitamin D supplement use associated with lower risk of breast cancer

Carnitine deficiency suggested as contributor to autism

Hop Oil: A Safe Sleep Aide

White Camphor Oil: The Purest Camphor Oil

Lutein — An Important Nutrient for Eye and Brain Health

Taurine: Facts About This Crucial Amino Acid

 
Print Page
Email Article

New Discoveries About Neuron Plasticity Linked to Learning and Memory

  [ 221 votes ]   [ Discuss This Article ]
www.ProHealth.com • November 1, 2005


Source: University of Texas at Austin AUSTIN, Texas--Neurons experience large-scale changes across their dendrites during learning, say neuroscientists at The University of Texas at Austin in a new study that highlights the important role that these cell regions may play in the processes of learning and memory. The research, published online Oct. 23 and in the November issue of the journal Nature Neuroscience, shows that ion channels distributed in the dendritic membrane change during a simulated learning task and that this requires the rapid production of new proteins. "Our new work strongly supports the idea that learning involves changes in dendrites," says Dr. Daniel Johnston, director of the Center for Learning and Memory and professor in the Institute for Neuroscience. The finding could also lead to advances in understanding conditions like epilepsy and age-related memory loss and could point to potential treatment opportunities for such conditions in the future. Dendrites--the thin branch-like extensions of a neuron cell--receive many inputs from other neurons that transmit information through contact points called synapses. Much attention has been focused on the role that changes at synapses play in learning. They change in ways that make it easier for connected neurons to pass information. Johnston and his colleagues show that learning and memory are likely to not only involve changes at synapses, but also in dendrites. They found that h-channels, which are distributed throughout the dendrite membrane and allow the passage of potassium and sodium ions into and out of the neuron, are altered during learning. "The h-channels undergo plasticity, not near the synapse but probably throughout the dendritic tree," says Johnston. To record the changes during learning, cells from the rat hippocampus (an important area of the brain for short-term memory) were electrically stimulated using a high frequency pattern called theta-bursts. Theta-bursts mimic the electrical stimulus that shoots through neurons when animals perform a learning task. The researchers found that when stimulated with theta-bursts, hippocampus neurons showed h-channel plasticity and a rapid increase in the synthesis of h-channel proteins. The proteins were produced in the rat hippocampal neurons within 10 minutes, which is pretty rapid for cells, says Johnston. "This really pushes the envelope with respect to how fast a neuron can produce new proteins important for learning," he says. Learning and memory researchers know that protein synthesis in neurons is related to long-term memory, because protein synthesis inhibitors block long-term memory in animals. Johnston says it's possible that the new proteins are being used by the neuron to build more h-channels in the dendrite membrane. He has a working hypothesis that h-channels may help buffer receiving neurons from being barraged and over-stimulated by inputs coming from information transmitting neurons. "The h-channel plasticity alters the way the entire dendritic tree responds to the synaptic inputs," he says. H-channel plasticity may normalize the firing rate of the cell. "If cells aren't kept in a normal operating regime, learning would not be as effective," Johnston says. "H-channel plasticity might keep the cell within an operating window in which it can continue to learn."



Post a Comment

Featured Products From the ProHealth Store
FibroSleep™ Ultra ATP+, Double Strength Ultra EPA  - Fish Oil


Article Comments



Be the first to comment on this article!

Post a Comment


 
NAD+ Ignite with Niagen

Featured Products

Mitochondria Ignite™ with NT Factor® Mitochondria Ignite™ with NT Factor®
Reduce Fatigue up to 45%
Vitamin D3 Extreme™ Vitamin D3 Extreme™
50,000 IU Vitamin D3 - Prescription Strength
Ultra EPA  - Fish Oil Ultra EPA - Fish Oil
Ultra concentrated source of essential fish oils
FibroSleep™ FibroSleep™
The All-in-One Natural Sleep Aid
Optimized Curcumin Longvida® Optimized Curcumin Longvida®
Supports Cognition, Memory & Overall Health

Natural Remedies

Nutrients to Combat the Modern Stress Epidemic Nutrients to Combat the Modern Stress Epidemic
Natural Bladder Control, Go Less and Live More Natural Bladder Control, Go Less and Live More
Green Coffee Extract: Unique Obesity Intervention Green Coffee Extract: Unique Obesity Intervention
The Big Blue Fish that Helps Chase the Blues Away The Big Blue Fish that Helps Chase the Blues Away
Coconut Oil - Healthy Gifts from the 'Tree of Life' Coconut Oil - Healthy Gifts from the 'Tree of Life'

CONTACT US
ProHealth, Inc.
555 Maple Ave
Carpinteria, CA 93013
(800) 366-6056  |  Email

· Become a Wholesaler
· Vendor Inquiries
· Affiliate Program
SHOP WITH CONFIDENCE
Credit Card Processing
SUBSCRIBE TO OUR NEWSLETTERS
Get the latest news about Fibromyalgia, M.E/Chronic Fatigue Syndrome, Lyme Disease and Natural Wellness

CONNECT WITH US ProHealth on Facebook  ProHealth on Twitter  ProHealth on Pinterest  ProHealth on Google Plus

© 2017 ProHealth, Inc. All rights reserved. Pain Tracker App  |  Store  |  Customer Service  |  Guarantee  |  Privacy  |  Contact Us  |  Library  |  RSS  |  Site Map