The Role of Mitochondrial Dysfunctions Due to Oxidative and Nitrosative Stress in Fibromyalgia and ME/CFS

1 Star2 Stars3 Stars4 Stars5 Stars (4 votes, average: 4.75 out of 5)
Loading...

The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets?

By Mira Meeus PhD, et al.

Abstract:

Introduction: Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are characterized by persistent pain and fatigue. It is hypothesized that reactive oxygen species (ROS), caused by oxidative and nitrosative stress, by inhibiting mitochondrial function can be involved in muscle pain and central sensitization as typically seen in these patients.

Areas covered: The current evidence regarding oxidative and nitrosative stress and mitochondrial dysfunction in CFS and FM is presented in relation to chronic widespread pain. Mitochondrial dysfunction has been shown in leukocytes of CFS patients and in muscle cells of FM patients, which could explain the muscle pain. Additionally, if mitochondrial dysfunction is also present in central neural cells, this could result in lowered ATP pools in neural cells, leading to generalized hypersensitivity and chronic widespread pain.

Expert opinion: Increased ROS in CFS and FM, resulting in impaired mitochondrial function and reduced ATP in muscle and neural cells, might lead to chronic widespread pain in these patients. Therefore, targeting increased ROS by antioxidants and targeting the mitochondrial biogenesis could offer a solution for the chronic pain in these patients. The role of exercise therapy in restoring mitochondrial dysfunction remains to be explored, and provides important avenues for future research in this area.

Source: Expert Opinion on Therapeutic Targets, July 9, 2013. By Mira Meeus PhD, Jo Nijs PhD, Linda Hermans MSc, Dorien Goubert MSc and Patrick Calders PhD. University of Antwerp, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, Pain in Motion Research Group, Antwerp, Belgium.

1 Star2 Stars3 Stars4 Stars5 Stars (4 votes, average: 4.75 out of 5)
Loading...



Leave a Reply